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SUMMARY

Uncertainty makes everything harder, and uncertainty is everywhere.

In the electric power sector, uncertainty comes from fuel prices, from demand uncer-

tainty, and from the weather, among other sources. Utilities must plan their generating

portfolios in the face of all of this, and generally make their decisions by balancing expected

cost of generating electricity against the riskiness of a portfolio. However, properly account-

ing for all sources of uncertainty is a computational challenge when each portfolio must be

assessed using detailed time series simulations. Utilities generally under-explore their op-

tions, or under-explore uncertainty space, because an exhaustive search of both would be

intractable.

In engineering design, the uncertainty challenge has been tackled a myriad of ways.

Many approaches fall under the umbrella of simulation-based robust design, which sepa-

rates the inputs of an engineering analysis code into design variables, which are under the

control of the designer, and noise variables, which are beyond the designer’s control but

can be assigned uncertainty distributions. The computational cost of running simulations

is mitigated to an extent through the use of surrogate models, which predict the simulation

results with quantifiable accuracy at un-sampled points.

Within robust design, this dissertation explores two overlapping classifications of meth-

ods. Methods which rely on crossed arrays use one set of surrogate models for the effects

of design choice on mean and risk, and at every candidate design they use a separate ap-

proach to quantify uncertainty. Combined array methods, on the other hand, use a single

surrogate model for the effects of design and noise variables, and then estimate the effects

of uncertainty from the model. In a separate classification, design of experiments (DoE) ap-

proaches use a fixed set of pre-specified simulation runs to build a model, whereas statistical

improvement methods use a small set of “warm-start” runs and then adaptively sample in

promising regions of the design space. When there are multiple objectives (such as mean

xviii



www.manaraa.com

and risk), this document will refer to multi-objective statistical improvement approaches or

MOSI. These classifications can be combined, yielding four possible methods that will be

addressed in this document.

The literature has found that combined array (C) methods generally require fewer sam-

ples than crossed array (X) methods. It has also been shown that statistical improvement

methods require fewer samples than design of experiments (DoE) approaches. Despite this,

combined-array multi-objective statistical improvement (C-MOSI) methods are not found

in the literature.

There are challenges to implementing C-MOSI. These include second-order probabil-

ity analysis (“uncertainties of uncertainties”), re-formulating MOSI to deal with uncertain

Pareto sets, and criteria for sampling in noise space. These are addressed using available

literature where possible, with extensions where required. C-MOSI is successfully imple-

mented, and shown to work, at the cost of computational overhead.

Once the challenges of implementing C-MOSI have been met, a set of experiments

quantify the performance of the four methods on a scalable test problem. These seek to

answer three research questions. First, are crossed array (X) methods more or less sensitive

than combined array (C) methods to the number of noise variables? Second, are DoE

methods more or less sensitive than MOSI methods to the number of design variables? And

third, is there ever a design scenario where C-MOSI is more efficient than the other three

methods, in terms of achieving some level of accuracy for as few samples as possible?

All four methods gradually reduce error with increasing numbers of samples. A power

model is found to represent this progression well. Further, the differences between the

methods are represented well by a linear effects model, which can be used to answer the three

research questions. First, in the subset of design scenarios that were explored, combined

array (C) methods are more sensitive than crossed array (X) methods to the number of noise

variables. Second, DoE methods are more sensitive than MOSI methods to the number of

design variables. And third, for low sample budgets, C-MOSI is found to be the most

efficient of the four methods. However, when the sample budget is high, X-MOSI is able to

reduce the error further.

xix



www.manaraa.com

Lastly, the methods are applied to a simulation-based energy portfolio selection problem.

C-MOSI is shown to work, though the benefits relative to a combined-space DoE (C-DoE)

approach are not as dramatic.
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CHAPTER I

INTRODUCTION

It is likely that the decades to come will see significant changes to the world’s energy infras-

tructure. Increasing energy demand, a desire for low-carbon, low-pollution, and sustainable

forms of energy, and concerns about reliability and security will motivate a continual stream

of changes in the way humanity produces and consumes energy.

An electric power utility faced with increasing demand for energy services must regu-

larly plan infrastructure investments. These investments include increasingly diverse com-

ponents, including renewable energy sources, energy storage, energy efficiency programs,

and demand side management, a selection of which are shown in Figure 1. In order to

properly quantify the effects of these diverse components, utilities must use time-series sim-

ulation tools. Such tools may take a long time to run, leading to computational budget

constraints.

Figure 1: Diverse energy portfolio components

The portfolio selection problem is complicated by the presence of diverse sources of un-

certainty, including future fuel and carbon prices, wind farm performance, demand growth,

etc., represented in Figure 2. These uncertainties lead to risks, and portfolios must be cho-

sen which balance those risks against expected benefits. The quantification of risk adds to

the computational burden, requiring extra simulation runs.

In this dissertation, the electric power portfolio selection problem is defined as a robust

design problem. The problem of interest is that of finding an efficient frontier of candidate

energy portfolios that have high expected benefits and low risk; risks are due to uncertainty
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Figure 2: Multiple sources of uncertainty

in external noise variables. Methods from the robust design literature are examined that

have the potential to solve the problem, specifically surrogate modeling approaches that

employ either design of experiments or multi-objective statistical improvement methods.

The combination of these two methods is identified as a gap in the literature that has the

potential to reduce the number of simulation runs.

A central challenge is the quantification of epistemic uncertainty (due to lack of simu-

lation code samples) on measures of aleatory (external) uncertainty. Enabling methods are

found in the literature, and the end result is a set of surrogate models which are locally

accurate around efficient portfolios. Computational savings are achieved by allowing high

model error in regions where portfolios are dominated in terms of risks and performance.

The surrogates can then be used in combination with any of a number of decision-making

processes and preference structures, with a quantifiable degree of confidence.

The methods are applicable beyond energy problems, and can be used generally for

design problems where simulation codes are expensive, uncertainty due to noise factors

varies as a function of the control variables, and there are multiple competing objectives.

The dissertation is organized as follows.

Chapter 2 presents the motivating problem, energy portfolio selection, and describes

it as a robust design problem with design variables and noise variables. The problem is

simplified slightly, by only indirectly treating the challenge of stochastic time series; a full

treatment is left to future work.

Chapter 3 presents background on robust design. It discusses types of uncertainty, types

of robust design problems, and measures of risk.

Chapter 4 describes the mathematics behind Bayesian surrogate models, an important

enabler. It describes the Gaussian Process that will be used in the remainder of this work,
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Table 1: Taxonomy of Methods

Crossed Array Combined Array

Design of

Experiments X-DoE C-DoE

Multi-Objective

Statistical X-MOSI C-MOSI

Improvement

along with linear Bayesian models, which are another possible model choice.

Chapter 5 describes methods found in the robust design literature for sampling expensive

simulation codes when there are multiple objectives. It covers design of experiments (DoE),

genetic algorithms, and multi-objective statistical improvement (MOSI) methods. It also

describes the difference between combined arrays (C) and crossed arrays (X). These two

classifications lead to a taxonomy of methods, shown in Table 1. The lower-right method,

C-MOSI, is identified as a gap in the literature.

Chapter 6 expands on that gap. It develops an an approach to using multi-objective sta-

tistical improvement (MOSI) methods along with with surrogates regressed on a combined

(C) design/noise space, referred to as C-MOSI. Several research questions are presented

with regard to the effectiveness of C-MOSI relative to other related methods:

1. Are combined (C) or crossed (X) array methods more sensitive to number of noise

variables?

2. Are DoE or MOSI methods more sensitive to number of design variables?

3. Is there a design scenario where C-MOSI is more efficient than other methods?

Chapter 7 develops an electric power portfolio test problem, and uses it to characterize

the design and noise spaces of the problem of interest. It is found that the space is relatively

smooth, but possibly multimodal, with the Pareto frontier representing a small fraction of

the output space. The noise space is found to be monotonic and smooth.

In Chapter 8 an analytic test function is developed which shares the gross features of

the electric power test problem, but which runs quickly and can be scaled arbitrarily in
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terms of number of design and noise input variables.

In Chapter 9, the scalable test problem is used to investigate the behavior of the method.

In the first experiment, the numbers of design and noise variables are fixed at 2 each, and

the relative performance of four methods shown in Table 1 are characterized. As an answer

to Research Question 3, C-MOSI is found to be most efficient for low numbers of samples,

though due to ill-conditioning effects in the Gaussian Process surrogates used, it is unable

to reduce error as much as the X-MOSI method.

In a second experiment, the sensitivities of the four methods are investigated with re-

spect to number of design variables and number of noise variables. Four settings are used,

with both number of design variables (pD) and number of noise variables (pS) varied from 2

to 3. These are small numbers of variables, far smaller than would be used in a real design

scenario, but in order to fully characterize the performance, several hundred independent

DoEs and ten independent MOSI runs are used for each method and dimensionality com-

bination. This level of extensive testing would not be possible for larger numbers of input

dimensions, because computational cost scales badly with problem dimensionality.

The methods all are found to reliably reduce error with increasing numbers of samples,

and this relationship is found to be well-represented with a power function. The coefficients

of the power function are taken to be quantifications of method efficiency. Lastly, this

power model structure and all of the data are used to regress a single linear effects model

that represents the effects of array type, sampling approach, problem dimensionality, and

number of samples on error. This model is used to answer the first two research questions:

1. Combined (C) array methods are more sensitive than crossed (X) array methods to

the number of noise variables.

2. DoE sampling methods are more sensitive than MOSI sampling methods to the num-

ber of design variables.

Several other interesting interactions are also presented.

Chapter 11 concludes and discusses opportunities for future work.
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CHAPTER II

ELECTRIC POWER PORTFOLIO SELECTION

Clearly, electric power generating infrastructure investments have been selected by some

method for as long as they have existed, and they have been selected with the aid of

computers since the technology became available in the late 1960’s. This section will begin

with a very brief overview of financial portfolio selection, and its application to energy

portfolios. It will then briefly show the development of computational energy portfolio

selection methods, from simple statistical methods to time-series simulation methods, and

a description of how modern utilities choose their portfolios. Three important characteristics

will define the research scope, and the problem will be re-cast in the context of an engineering

design problem.

2.1 Financial Portfolios

Selecting a generating portfolio can be seen as roughly analogous with the selection of a

financial portfolio. The decision-maker wishes to choose investments in a portfolio of energy

sources and other energy infrastructure components to meet expected increases in demand

for energy services. Each component will provide energy or in some way affect energy

flows, and different components will be susceptible to different sources of uncertainty. Some

examples:

• An open-cycle natural gas plant will provide relatively high-cost power that can be

rapidly ramped up and down, and will be vulnerable to volatility in the prices of

natural gas and carbon.

• A wind farm will provide energy that incurs no fuel or carbon costs, but with a power

profile that is vulnerable to wind speed uncertainty and cannot be controlled.

• A pumped-hydro energy storage facility is a net consumer of energy, but absorbs
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power fluctuations and therefore improves power supply/demand matching and re-

duces uncertainty.

• An investment in a home weatherization program reduces demand rather than in-

creasing supply, but participation would be uncertain.

Since the various sources of uncertainty affecting the different components are not all per-

fectly correlated with one another, combining multiple elements in a diversified portfolio

helps to reduce the risk.

2.1.1 Modern Portfolio Theory

In finance, there is a single basic objective, that of return. However, for any portfolio,

the return is uncertain, and Modern Portfolio Theory decomposes the problem into a two-

objective problem. It treats the problem as a trade between some measure of expected

performance and some measure of risk. This approach was pioneered in 1952 by Markowitz,

who treated the problem as a trade between expected return and the variance of the return

[75]. Given a set of assets, each with a known mean and variance, and with known corre-

lations between all assets, Modern Portfolio Theory analytically gives a mean and variance

for any arbitrary portfolio made up of those assets.

It was later shown that variance is flawed as a measure of risk [101]. Investors are

more worried about the consequences of abnormally low returns than about abnormally

high returns, and saying that portfolio A has higher variance than portfolio B is not the

same as saying it is more likely to perform poorly. What’s more, since returns may not

be normally distributed, variance does not tell enough about the poorly-performing tail of

the return distribution. This has led to a variety of alternative risk measures, including

value at risk (VaR), which is simply a percentile, [58] and conditional value-at-risk (CVaR)

[6]. The basic premise remains the same, however; there is a trade between some measure

of expected performance, and some measure of risk. In the context of optimization, this is

a Multi-Objective Problem (MOP), specifically one with two objectives. It can be solved

by first identifying a Pareto frontier (also called an efficient frontier) of efficient portfolios

as shown in Figure 3. If a portfolio is efficient, no other portfolio can be found that has
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simultaneously better return and lower risk. Portfolios off of the frontier, on the other

hand, are “dominated”; it is possible to find another portfolio that has lower risk and equal

or better expected return. Ultimately, a decision-maker will select a portfolio along the

efficient frontier based on their risk preference.

Figure 3: Efficient (Pareto) frontier. Efficient portfolios are along the green band, while
dominated portfolios are in the blue region.

2.1.1.1 Portfolio Theory Applied to Energy

Energy portfolios can be selected in the same manner as financial ones. A portfolio can

be found which simultaneously has low energy cost and low cost risk, and there has been

substantial historical effort in this area. Modern portfolio theory as applied to energy first

appears in a paper by Bar-Lev and Katz in 1976, where it is shown that real generating

portfolios as selected by utilities were generally efficient, but weighted towards low cost and

high risk [11]. This approach assumed that every fuel could be characterized by a mean

cost per unit of energy and a variance on that cost, with known correlations between all

costs. It then made use of the analytic results of Modern Portfolio Theory. Humphreys

and McClain additionally considered changes in efficient portfolios over time, as well as

the effects of pricing externalities on efficient portfolios (one way of dealing with a multi-

objective problem, to be discussed in the next section) [52]. However, these studies did not

account for the specific technical constraints of planning an energy portfolio, such as the

necessity of rapidly ramping plants up and down to meet peak loads.
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The technical shortcomings were to a degree addressed by Gotham et al. [44], who

argue that Modern Portfolio Theory approaches are dismissed by practitioners because

they ignore these technical factors and produce illogical results. Specifically, they identify

load factors, that is, the fraction of time that a plant is operational. For a plant with a

high fixed cost but a low operational cost, it makes sense to run all the time, at a high

load factor, and to provide baseload power; this is how coal and nuclear plants are used.

In contrast, a plant with low fixed cost but high operational cost, such as a natural gas

plant, will be kept off or in standby and only used at times of peak load. To use a simple

Modern Portfolio Theory approach, fixed and operational costs must be lumped, resulting

in nonsensical results (such as that natural gas plants should not be used at all). Gotham

et al. rectify this by including a Load Duration approach, a method introduced shortly in

a later subsection. Even this, however, will be shown to be an incomplete solution when

faced with unconventional infrastructure.

2.1.2 Decision Theory

Rather than viewing the problem as a trade between expected return and some risk met-

ric, the decision theory approach instead maps all options onto a single objective, namely

expected utility. The idea is that for very high values of return, there is less utility to be

gained from each additional dollar. A risk-averse investor, then, will favor a lower return

with high probability over a higher return with low probability; they will prefer the safe bet.

By examining the decision-maker’s risk preference, it is possible to construct a utility func-

tion that describes (to within a linear transformation) how much utility a decision-maker

would derive from a given outcome. Under uncertainty, the problem becomes one of finding

the option that gives the greatest expected utility.

The expected utility approach was first proposed in 1738 by Bernoulli [16] and developed

into its current form by von Neumann and Morganstern in the 1940s. A description by the

authors can be found in their 1944 book [112] (which principally develops game theory).

It is a theory that is prescriptive, in that it tells decision-makers how they should make

decisions if they are to be rational [49]. Example utility curves of risk-averse, risk-neutral,
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and risk-seeking individuals are shown in Figure 4.
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Figure 4: Utility curves showing different attitudes to risk.

Neumann and Morganstern present axioms that define the mathematical properites of

utility, and establish that it is quantifiable up to a linear transformation. Other authors

state the axioms differently. The form presented by Luce and Raiffa [73] and also adopted

by Hazelrigg [49] is as follows:

• Axiom 1. Ordering of Alternatives. Preference and indifference orderings hold be-

tween any two outcomes, and they are transitive. That is, for outcomes Ωi s.t.

Ω1 % Ω2 % Ω3 % · · · % Ωr (1)

where % means “preferred or indifferent to”, then

u1 ≥ u2 ≥ u3 ≥ · · · ≥ ur (2)

where u1 is the utility of outcome Ω1.

• Axiom 2. Reduction of compound lotteries. Any compound lottery is indifferent

to a simple lottery with the same outcomes and associated probabilities. A lottery

means just what it does in a colloquial sense, that one can purchase a chance to win
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a prize with some value and some defined probability. A compound lottery is one in

which winning the first lottery automatically enters one into a second lottery with

pre-defined probability and payout. The main point here is that only the end result

matters, and there is no benefit derived from the act of gambling itself.

• Axiom 3. Continuity. Consider the same ordering of outcomes Ω1 to Ωr from Axiom

1. There is some probability pi such that a certainty of outcome Ωi is indifferent to a

lottery whose outcomes are Ω1 and Ωr, or in notation,

Ωi ∼ [pi,Ω1; (1− pi),Ωr] = Ω̂i (3)

That is the lottery Ω̂i is indifferent to the certainty outcome Ωi.

• Axiom 4. Substitutibility. In any lottery L, Ω̂i is substitutible for Ωi.

• Axiom 5. Transitivity. Preference and indifference among lotteries are transitive

relations.

• Axiom 6. Monitonicity. A lottery [p,Ω1; (1 − p),Ωr] is preferred or indifferent to

a lottery [p′,Ω1; (1 − p′),Ωr] if and only if p ≥ p′. That is, simply, that given two

lotteries with the same outcomes, the one with the higher probability of the favorable

outcome is preferred.

From these axioms, the following theorems follow directly (using the language of Hazelrigg

[49]):

Expected Utility Theorem: Given a pair of alternatives, each with a range of possible

outcomes and associated probabilities of occurrence, that is, two lotteries, the preferred

choice is the alternative (the lottery) that has the highest expected utility.

The Substitution Theorem: A decision maker is indifferent between a lottery L and

a certainty outcome whose utility is equal to the expected utility of the lottery, and the

certainty outcome can be substituted for the lottery.

Thus it has been theoretically shown that a rational decision-maker with self-consistent

risk preferences (that obey the above axioms) must have some definable utility function that
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fully encodes their risk preferences [112]. The modern portfolio theory approach discussed

previously, on the other hand, makes no such claim. From a utility theory standpoint,

there is no guarantee that a Pareto frontier consisting of expected return and any given

risk metric would contain the portfolio with highest expected utility. However, the modern

portfolio theory approach has the (possible) advantage that the candidate set of portfolios

can be generated prior to consultation with the decision-maker, whereas a utility theory

approach requires an a priori elicitation of risk preference before any optimization step. A

more detailed treatment of utility theory in the context of engineering design can be found

in the next chapter, which focuses algorithmically on the sampling and decision-making

process.

References to the use of utility theory to electric power portfolio planning can be found as

far back as the 1960’s and 1970’s [51] [1], and applications to real energy planning problems

can be found in the 1970’s and 1980’s [115] [62] [63]. However, actual applications are rare,

and it is not currently used by electric power utilities in any of the IRP documents surveyed.

2.1.3 Multiple Objectives

An energy planner may have more than one objective. This is almost certainly true if the

planner is affiliated with a publicly owned utility or planning agency, and is concerned with

the public good in addition to making profit. The decision-maker must choose a portfolio

that is expected to provide energy services at low cost, with low environmental impact, and

with high reliability. This multi-objective nature has been noted in the literature, as early

as 1980 by De Simone [27].

Multi-objective problems are well-studied in engineering, operations research, and fi-

nance, and a more thorough discussion of methods for solving them will be presented in

the robust design chapter. However, it is worth pointing out two general classes of solution

methods: those with and without a priori preference elicitation.

In the first class of methods, the preference of the decision-maker with regard to the

relative importance of the various objectives can be specified a priori, either through simple

weights or through some more complex function (as are found in Multi-Attribute Utility
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Theory (MAUT), which is discussed further in the next chapter). If this is possible, then

the analysis task is comparatively simpler: find a single optimum portfolio, that maximizes

the single measure of goodness.

If, on the other hand, preferences cannot be elicited a priori, the optimization task is

more challenging: find the Pareto frontier, so that the decision-maker can later select a

non-dominated design according to their preferences.

In this work, it will be assumed that no prior preferences are known. Perhaps the

analyst and the decision-maker are too separated by time, space, or bureaucracy to elicit

preferences; perhaps there are multiple decision-makers, each with their own preferences,

and compromise will only be made in the presence of real information; or perhaps it is

expected that preferences will change. In any case, the assumed problem is to find a

complete set of Portfolios that are Pareto-optimal (“efficient”) with regard to all of the

objectives. However, some of the methods developed in this thesis will be applicable to

methods that do use a priori preference elicitation, and this will be discussed in the “future

work” section at the end of the document.

2.2 Load Duration Curve Methods

For a utility or a policy analyst, there is a need to model a candidate energy portfolio

both technically and economically. For a set of conventional power plants, and for planning

purposes, the traditional method is to use a load duration curve method. First introduced by

Baleriaux in 1967 [9] and popularized by Booth in 1972 [19], a Load Duration Curve (LDC)

is just a re-scaled and re-oriented cumulative distribution function (CDF) of the electricity

demand distribution. In load duration methods, all available plants are characterized by

their capacity (or by multiple discretized possible levels of output) and by their availability,

and are ranked in order of increasing energy cost (“merit order”). It is assumed that as

the energy demand increases, power plants are turned on (or ramped up), cheapest ones

first; and as demand decreases, they are turned off (or down). If the loads can be predicted,

and there are only fossil plants being considered, LDC methods can find the lowest-cost

portfolio, and can estimate operating costs and measures of reliability [71]. Though LDC
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methods are based on a statistical representation of the load, they are deterministic in that

they assume a fixed load distribution, assume fixed operating and fuel costs, and arrive at

a deterministic lowest-cost portfolio.

2.3 Simulation Methods

Unlike conventional combustion plants, renewable energy sources are “non-dispatchable”,

and cannot be turned on or off at will. They thus cannot be modeled with LDC methods,

which assume sources are turned on in “merit order”. At low renewable penetration levels,

however, there are ways of estimating their effects [78]. Energy storage presents further

difficulties, though it can be treated with some low degree of fidelity [19].

Modern planners, however, need to consider more complex systems in their portfolio

studies, as has been recognized as early as 1980 [27]. High penetrations of renewables place

demands on the ability of power plants to rapidly throttle up and down, motivating the use

of time-series studies with high time resolution. Distributed storage presents a number of

modeling challenges, including multiple localized limitations on power flows. Energy storage

in general cannot be accurately modeled without time-series studies because state of charge

at any given time depends on all previous time periods. Demand reduction methods can be

modeled at low fidelity by assuming net reductions in system-wide demand, but in practice

they depend on many distributed localized demands and their interaction with the system-

wide demand, and these effects may be important. New transmission infrastructures may

be an important portfolio component, but they cannot be studied without some modeling

of power flows.

All of these complexities individually motivate the use of time-series simulation. If they

are to be considered in unified, diversified portfolios, their cumulative demands push utility

planners to the use of complex and computationally intensive models as are commonly used

in large-scale energy studies. Indeed, major utilities are already using time-series simula-

tions for their portfolio planning studies [8][84][53][90][89][95]. There is even commercially

available time-series simulation software, such as GenTrader [92] and Ventyx System Opti-

mizer [111], specifically marketed to utilities for portfolio planning purposes.

13



www.manaraa.com

Policy analysts, as well, typically use time-series simulation studies. Examples of studies

include the TradeWind study in the European Union, which deals with large-scale power

flows [66], and the Eastern Wind and Western Wind studies in the U.S., which model

large-scale power flows, distributed storage, and high-resolution wind and solar resources

[34],[42]. Many U.S. government energy policies studies use the National Energy Modeling

System (NEMS), which does not use time series energy simulations, but does have a detailed

national economic model that incurs significant computational cost [33].

For any given problem, a decision-maker should certainly not rely on more complex

a model than is necessary, and for many portfolio planning problems it may be perfectly

acceptable to rely on low-fidelity fast-running simulations or even load duration methods.

However, high-fidelity methods are already employed for utility planning and policy studies,

and it is natural that as the complexity of the portfolios being considered increases so too

will the complexity and computational burden of the simulation methods. For the purposes

of this research, then, it is assumed that simulation codes are sufficiently computationally

expensive that the number of simulation runs available to the analyst is constrained by

available computer time.

2.4 Treatment of Risk in Energy Studies

Much of the previous sections has dealt with the presence of uncertainty and risk in the

energy portfolio planning problem. It has been shown that studies which approach the

energy portfolio problem from a financial portfolio perspective tend to deal centrally with

risk. However, these approaches find limited use in practice. How, then, is risk treated in

practical energy portfolio selection studies?

A Lawrence Berkeley National Labs study looked at the Integrated Resource Plans

(IRPs) of twelve utilities in the Western United States, and published several papers and

reports [114][13][12]. They found that the treatment of risk varied substantially between

utilities, but a general characterization of the more advanced plans would be that they

use Monte Carlo simulations and scenario analysis. For noise variables which can be as-

signed distributions from historical data and forecasting, such as natural gas prices and
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weather uncertainty, Monte Carlo simulations are used to characterize the distributions of

the responses of interest. For noise variables which cannot be assigned historical or forecast

distributions, notably carbon price, scenario analysis is more often used to characterize the

effects of high, medium, and low values. The specific treatment of risk is explored further

in the next chapter, and a table of risk metrics used by specific utilities can be found in

Table 2.

In the case of Monte Carlo analysis, utilities use the results to construct efficient frontiers

for expected energy cost and energy cost risk, and select portfolios from this frontier. If

sensitivities are used as well, multiple frontiers are constructed [13].

With regard to the combination of Monte Carlo and scenario analysis, the Lawrence

Berkeley studies found that the two methods were done serially, to their possible detriment.

As an example, Monte Carlo studies which included the effects of natural gas price volatility

might be conducted first, and used to screen out non-efficient portfolios. These down-

selected portfolios would then be subjected to a carbon sensitivity study, but only after

screening out natural gas heavy portfolios which might better deal with fluctuations in

renewable energy [13].

In the case of policy studies, where there is a less clear “portfolio selection” objective,

sensitivities tend to be used instead, with only a handful of simulation cases being run at

all [34][42].

Therefore, in the universe of electric power portfolio studies, there seems to be a chronic

under-exploration of uncertainty space.

2.5 Exploration of the Portfolio Space

In order to select a portfolio from the efficient frontier, that frontier must first be found.

From any set of portfolios with known expected cost and known cost risk, a “Pareto set” can

be found, of portfolios which are not dominated by other known portfolios. However, there

may be other unexplored portfolios, not included in the data set, that dominate the known

Pareto set. As more and more portfolios are examined, the Pareto set found from the data

will more and more closely resemble the “true” Pareto frontier of all possible portfolios.
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Figure 5 shows two efficient frontiers found in the Integrated Resource Plans of Pacifi-

Corp. It uses an estimate of Conditional Value-at-Risk as a metric (though it is not labeled

as such), and shows 16 portfolios, for two partifular carbon tax scenarios. The frontier itself

is quite small relative to the overall range of values. The same document contains similar

plots that are made under different carbon tax scenarios. Note that the risk in the plot is

due to (quantified) fuel price uncertainty, whereas uncertainty about future carbon prices

is treated in a fundamentally different manner.

Figure 5: PacifiCorp’s frontier plots for two carbon price scenarios. The IRP document
contains additional plots for other carbon scenarios [90]

Unfortunately, energy utilities tend not to examine very many portfolios. Of all the

resource plans examined by the Lawrence Berkeley group, nearly all examined fewer than

100 portfolios, and some examined as few as 20 [13]. The portfolios were generally hand-

picked according to the expertise of the decision-makers. One utility, PacifiCorp, used

optimization to select their portfolios, and found one optimized portfolio for each of about

50 noise variable scenarios. They explicitly noted that they limited the number of scenarios

due to the data-processing and model run-time requirements [90].

Computational budget, then, is a very real constraint, and limits the extent to which

utilities are exploring the portfolio and noise spaces. If portfolio and noise space can be sam-

pled more carefully, it seems likely that there will be an opportunity to better approximate

the “true” efficient frontiers, and ultimately to find better portfolios.
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2.6 Generalized Description of the Energy Portfolio Selection Problem

The characteristics of energy portfolio planning problems define the problem to be solved,

but methods useful for this problem will be applicable to many similar problems. The

problem can be treated generically as belonging to a class of decision-making problems

characterized by the following:

(a) Select a value of D, where D is a vector of decision variables, in this case representing

the amount of investment in each portfolio option. A particular setting of D can be

referred to as a portfolio or, in engineering literature, as a design.

(b) There are multiple measurable responses which should me minimized (or maximized)

as objectives.

(c) The response values at each D can only be calculated with a simulation code that is

computationally expensive. It is assumed for the sake of generality that the responses

may have local minima or be otherwise deceptive, though it is assumed that they are

at least locally smooth.

(d) A vector S represents noise variables, which are additional deterministic inputs to a

simulation code but represent uncontrollable environmental factors in the real world.

It is assumed that their distributions can be known or estimated from data.

(e) Some simulation inputs take the form of stochastic time series, and fluctuate randomly

from time step to time step.

(f) For any D, there is a probability distribution associated with each response due to

uncertainty. The probability distributions of the responses may be correlated with each

other.

From the generalized problem definition above, three central characteristics of the prob-

lem are identified, each motivating a general research objective.
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2.6.1 Characteristic 1: Presence of Noise Variables

As is seen in items (d), and (f), it is assumed that the decision-maker is concerned with

choosing a portfolio that is robust to uncertainty in the noise variables, represented by

a vector S. Noise variables might include growth in energy demand, average fuel prices,

carbon prices, or average wind speed (due to uncertainties in wind farm siting or average

weather), among other factors. For the purposes of this research, it is assumed that these

variables obey a known probability distribution, p(S), which in practice can estimated from

data, forecasting, or expert opinion. The responses of the simulation tool will be sensitive

to these noise variables, leading to the first objective:

Objective 1: Characterize the uncertainty of all responses of interest due to uncer-

tainty in the noise variables.

This characterization of response uncertainty will be necessary for the next objective.

2.6.2 Assumption: Exclusion of Stochastic Time Series

Item (e) deals with uncertainty due to stochastic time series. Stochastic time series might

include hourly or even minute-to-minute wind speeds, hourly cloudiness, hourly tempera-

ture, or daily natural gas prices. For series such as wind speed, an assumption of a constant

value would provide a very wrong result, since random fluctuations are an essential char-

acteristic. Instead, a noisy wind speed time series must be generated that has all of the

appropriate statistical properties. Simulations run with different time series might produce

different results, even if the statistical properties of the input time series are identical. This

means that electric power simulations are inherently stochastic, and multiple runs are re-

quired to fully characterize a single design, even when all of the noise variables (such as

average wind speed, as discussed in the previous subsection) are held constant.

Not only are electric power simulations inherently stochastic, but the output distribu-

tions will vary as a function of the design. All else held equal, a portfolio with low wind

penetration might have lower variability than one with high wind penetration, for example.

Problems of this type are called heteroscedastic.
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In practice, it is possible to evaluate a portfolio by using a single fixed time series that

has the appropriate statistical properties, and to hope that the simulation time period is

long enough to capture the mean and variability trends. This is not ideal, but in order to

reduce the scope of the problem, it is the approach used in this research. Full treatment of

uncertainty due both to heteroscedasticity and noise variables is left to future work.

2.6.3 Characteristic 2: Multiple Objectives

As is seen in item (b), there may be multiple measures of “performance”, each of which is

an objective.

Objective 2: Find portfolios that are efficient in satisfying multiple objectives and are

selected with proper consideration of risks.

Under a portfolio theory framework, this means finding Pareto frontiers of non-dominated

portfolios in a combined expected-performance/risk objective space. Under a utility the-

ory approach, this means constructing appropriate utility functions through decision-maker

preference elicitation with regard to different objectives and risk.

When utilities plan their generating portfolios, they usually consider only a single mea-

sure of performance, namely cost of electricity [8][84][53][90][89][95]. Only rarely do they

consider other objectives such as job growth [2]. If cost is the only stochastic objective, then

expected cost and cost risk are the two deterministic objectives under a portfolio theory

approach. Methods applicable to a 2-objective problem can be generalized to problems with

higher numbers of objectives, so all testing will be with respect to a 2-objective mean/risk

problem.

Under a utility theory approach, the classic single-objective formuation can be used

without involving the more complex methods of Multi-Attribute Utility Theory. However,

again the methods should be extensible to the multi-objective case if necessary.
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2.6.4 Characteristic 3: Expensive Simulations

As has been stated in item (c), it is assumed that any given energy portfolio (design) must

be evaluated with a time-series simulation computer code. Further, it is assumed that these

evaluations are computationally expensive. Though in simplified scenarios (and indeed, in

the the test cases for this research) a less expensive simulation may be used, it is assumed

that if a utility is seriously planning changes to its portfolio, it will want a level of detail and

accuracy that will motivate the use of a more expensive code. Model features may include

fine spacial resolution to resolve wind performance, short time steps to resolve transients

and reliability, and detailed modeling of distributed generation and storage. It is assumed

that there will always be a trade between fidelity and computational speed, and that a

desire for better information will always motivate the use of a higher fidelity (and thus

more expensive) code.

This characteristic motivates the last general objective:

Objective 3: Meet all other objectives with fewer simulations than the state of the

art.

Even if a method developed through this research effort can be demonstrated to use

fewer simulations in a particular test case, it will be impossible to demonstrate it for all

possible scenarios. Nonetheless, reducing the number of simulations is an important objec-

tive, and any indication that a method does so in even a single limited test case would be

an encouraging result.

2.6.5 Energy Portfolio Selection Problem in the Context of Engineering Design
Literature

The three general characteristics from the previous sections can be used to place the energy

portfolio selection problem in the context of the engineering design literature, rather than

the finance or electric power literature.

• Objective 1, to characterize the sensitivity of portfolios to noise, is the (non-exclusive)

domain of robust design. Robust design will be discussed generally in Chapter 3.
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• Objective 2, involves a combination of robust design with the field of multi-objective

design. Relevant literature will be discussed in Chapter 5.

• Objective 3, to reduce function calls, will motivate the use of optimization and sur-

rogate modeling methods. Surrogate modeling will be treated in Chapter 4, and

optimization will be discussed in Chapter 5.

The focus of the literature surveys, then, will be on robust design, and specifically its inter-

section with multi-objective, optimization, and surrogate modeling methods. As a shorthand,

this class of problems will be referred to as Robust/Multi-Objective/Expensive problems.

In Chapter 6, a method will be developed which incorporates all of the above elements.
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CHAPTER III

ROBUST DESIGN BACKGROUND

In the previous chapter, the problem was classified generally as a Robust/Multi-Objective/Expensive

problem. Many engineering problems take a similar form. In aircraft design, for example,

the designer seeks an aircraft that has low fuel burn and low pollutant emissions in the

presence of uncertain environmental conditions. Unfortunately for the designer, analysis

methods such as computational fluid dynamics codes are computationally very expensive.

There is much existing work on this type of problem to be found in the engineering design

literature.

This chapter will discuss the basics of robust design. It will cover classification of

uncertainty, types of robust design, and definitions of performance and risk. The next two

chapters will also be devoted to aspects of robust design. Chapter 4 will cover surrogate

models, an important enabler for most robust design methods. Chapter 5 will discuss

sampling methods for deciding what analysis cases to run.

3.1 Classification of Uncertainty

It is worth taking some time to classify uncertainty, as this will be important in later

discussions of surrogate modeling, robust design, and adaptive sampling.

3.1.1 Aleatory Uncertainty

The preceding chapters spent considerable time discussing environmental uncertainty due to

sources such as fuel prices, weather, etc., and how these sources lead to risk. Environmental

or “true” or “natural” uncertainty is also known as aleatory uncertainty, or alternately as

“irreducible uncertainty”. If the observer has perfect knowledge of nature, they will still

observe aleatory uncertainty. In this research, aleatory uncertainty is represented through

the use of noise variables, that is, quantities like carbon price that while unknown in nature

can be specified exactly in a model. In practice, especially in energy simulations, there is
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additional aleatory uncertainty that is due to the use of random time-series data, and may

result in different simulation results for the same set of inputs when results are aggregated

over months or years. While important, treatment of this type of aleatory uncertainty is

left to future work.

It could be argued that much environmental uncertainty could be reduced with better

models, and is not truly aleatory after all; for example, advances in weather modeling have

reduced the uncertainty about whether it will rain tomorrow. However, for the purposes

of this work, any uncertainty which is external to the designer’s model will be considered

aleatory.

In this document, the only source of aleatory uncertainty will be distributions on noise

variables. These distributions will be assumed to be known from data or estimated by the

decision-maker.

3.1.2 Epistemic Uncertainty

When dealing with experiments, there is a further type of uncertainty due to measure-

ment errors or incomplete observation. This is called “reducible” or epistemic uncertainty.

In the context of this research, the focus will be on a narrow sub-set of epistemic uncer-

tainty, specifically uncertainty that is due to not having sampled at a particular setting of

variables. The experimenter could sample, and reduce epistemic uncertainty, but because

simulations are expensive they may choose not to. This choice is at the root of statistical

improvement optimization methods, which will be discussed later, and the decision relies

on a quantification of this type of epistemic uncertainty.

There are other types of epistemic uncertainty which, while important, are left outside

the scope of this research. For example, it is assumed here that the computer experiments

are free of epistemic noise; in practice, it may be the case that small changes in input

variables lead to “noisy” changes in the outputs. There will also be epistemic errors due

to the use of an approximate simulation model; however, this type of error is not directly

relevant to this work. In this document, epistemic uncertainty is assumed to be due only

to lack of samples.
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3.2 Robust Design Classification

In engineering design, there is uncertainty associated with both the manufacturing imple-

mentation of a design and with the environmental conditions that will be seen by the final

product. Note that in the classification above, these are aleatory uncertainties.

If a design is chosen without regard to these uncertainties, and is “optimized” to maxi-

mize some measure of performance, the final manufactured product may perform poorly due

to imprecision in the manufacturing process or off-design operating conditions. The object

of robust design is to choose a design such that, even in the face of these uncertainties, the

final product will perform well with high probability.

The origins of robust design can be traced back to Taguchi methods [107], but the field

has changed significantly since that time, and a detailed discussion of its evolution is not

necessary. It will suffice to define robust design as it appears in the current literature, to

give context for the approaches found in a later chapter.

Chen et al. use the following classification of robust design problems [21]:

Type I - minimizing variations in performance due to variations in noise factors (uncon-

trollable parameters)

Type II - minimizing variations in performance caused by variations in control factors

(design variables)

A depiction of the two types of robust design problems, modeled after a figure found in

Chen et al., is found in Figure 6.

In this classification system, the focus of this research is on Type I robust design. There

are environmental factors beyond the control of the decision maker, such as fuel prices,

weather, and demand. The decision-maker wishes to choose a portfolio that performs well

with high confidence in the face of these uncertainties.

It is also possible that the decision-maker might wish to choose a portfolio which exhibits

Type II robustness, where it is insensitive to changes in the design variables. A wind farm

might not be built to the same capacity as expected, or a demand reduction program

might see fewer participants than intended. However, the focus of utility portfolio selection
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Figure 6: Robust Design Problem, robustness of the response T for two designs, D = a
and D = b: (a) Type I - robust to uncertainty in noise variables, (b) Type II - robust to
uncertainty in design variables. (Figure after Chen et al.[21])

is generally on Type I robustness, and in any case Type II is easier to deal with. Any

approach to solving Type I robust design problems can be easily altered to handle Type II

problems, but the reverse is not true. As can be seen from Figure 6, Type I requires an

extra set of variables, the noise variables, and methods for identifying their effects. Type II,

however, can be handled by simply “wiggling” already existing design variables. The focus

of this work, then, will be exclusively on Type I robust design.

3.3 Performance and Risk

It has been established that the objective of this work is to find portfolios that perform

well, yet are insensitive to uncertainty in noise variables (they are “robust”). But how are

performance and robustness measured?

Fundamentally, robust design deals with performance measures that are stochastic.

Given assumed probability distributions on the noise variables, there will be probability

distributions on the performance metrics. Ultimately, it will be necessary to compare one
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Figure 7: Decomposing a stochastic optimization objective into an equivalent deterministic
problem (a) Two portfolios in probability space, with probability density p(metric) as a
function of the performance measure (which is to be minimized) (b) The same two portfolios
in a decomposed two-objective space, plotted on axes of expected performance E[metric]
and risk

design to another. To do so, the designer must have a way of transforming the stochastic

design problem into an equivalent deterministic problem [106].

As has already been discussed, financial portfolio theory creates an equivalent determin-

istic problem by breaking the stochastic objective into two deterministic objectives, a mean

and a measure of risk. In Markowitz, the trade is between mean and variance [75]. Alter-

natives to variance include value at risk (VaR) [58] and conditional value-at-risk (CVaR)

[6]. In Figure 7, a pair of portfolios are conceptually depicted in a stochastic performance

space (left), and decomposed into a mean/risk space (right).

In the most general case, there may be multiple stochastic objectives. This adds com-

plexity, because it is possible that there are correlations between the various risk measures.

In the most complex case, there is a risk objective and an expected performance objective

associated with each stochastic objective, and a correlation between every possible combi-

nation of risk objectives. This correlation may itself change from portfolio to portfolio.

It is difficult to express the entire multi-objective/multi-risk concept in a single graphic,

but a conceptual depiction of a problem with two simple objectives (and an expected per-

formance and a risk objective for each) is depicted in Figure 8. The left side (a) shows con-

ceptual scatterplots of both benefit and both risk objectives, with each point corresponding

to a portfolio. Each sub-graph shows a 2-D projection of the 4-dimensional Pareto frontier.
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In this notional scenario, there is a trade-off between every pair of objectives. On the right

side (b), a single notional portfolio is selected, and a joint probability distribution of the

two basic objectives shows that their distributions are positively correlated; and since risk

is a function of the distribution, that means their risks are correlated. A decision-maker

might want to avoid a positive correlation in risks, since it means that poor performance in

one objective will tend to occur simultaneously with poor performance in another objective.

In the extreme, each of these risk correlations could be treated as an objective of its own,

but this complicates the problem further.

Figure 8: a) Notional multi-objective scatterplot with two expected performance and two
risk measures b) Notional joint probability distribution for two objectives for a single port-
folio, illustrating a portfolio with two correlated stochastic objectives

This multi-expected-performance/multi-risk decomposition of the stochastic multi-objective

problem is used by Chen [21], and is referenced by Daskilewicz et al. [26].

There are other ways of turning a stochastic multi-objective problem into an equivalent

deterministic one. Taguchi was mostly concerned with matching a target rather than mini-

mization or maximization, and used a signal to noise ratio or a loss function [107], and this

approach was adopted by others [113]. If the objective is minimization or maximization but

specific targets can be chosen for each objective, Joint Probability Decision Making charac-

terizes each portfolio by a single joint probability of simultaneously meeting all targets [10].

This captures the correlations between all risk measures, but does not allow for variable

targets, and thus requires a priori input from the decision-maker. Another approach, used

by Patel [91], is to create “layers” of Pareto frontiers, each at a particular pre-specified
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confidence level.

3.3.1 Decision Theory in Engineering Design

In the previous chapter, the basics of decision theory were presented as a means of choosing

options under uncertainty. Though developed as an economic theory, decision theory can

be applied to simulation-based engineering design. In the 1960’s, Ronald Howard developed

decision analysis as a methodology for making model-based decisions, including those in

engineering [51]. At its core is the use of utility theory, combined with appropriate engineer-

ing and economic models, in an iterative process that includes decision-maker preference

elicitation and further information gathering as needed. Howard’s decision analysis cycle is

shown conceptually in Figure 9.

Deterministic 
Phase

Prior Information

Probabilistic 
Phase

Informational 
Phase Decision

Act

Information 
Gathering

Gather new 
information

New 
information

Figure 9: Howard’s decision analysis framework [51]

Howard’s framework includes the same concept of noise variables (which he calls state

variables) and design variables (which he calls decision variables) as found in the robust

design literature. Howard’s state variables are explicitly defined according to the subjective

or Bayesian view of probability; that is, they represent the beliefs of the decision-maker,

whether this is informed through extensive specific data or through other means, and are

updated according to Bayes’ theorem as new information becomes available.
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Briefly, his framework has three main phases. Since the framework was developed in the

1960’s, when computing resources were precious, it is very conservative with regard to the

use of simulation models, though it is a model-based framework. In the deterministic phase,

the sensitivity of the model to its inputs is assessed in a screening step, and unimportant

factors are then left at default settings. In the probabilistic phase, the effects of uncertainty

in the state (noise) variables are considered; it is here that the decision-maker’s risk prefer-

ences are elicited. Howard goes beyond pure utility theory, and monetizes all outcomes, by

asking the decision maker what certain equivalent amount of money they would accept as

a substitute for an uncertain lottery.

Finally, the information phase determines the value to the decision-maker of gathering

information. If the state of knowledge about the system in question can be improved through

data gathering or experimentation, the value of that information is quantified using utility

theory and certain equivalents, and is compared with the cost of obtaining it. The process is

iterative: further information may be gathered, which will update the beliefs of the decision

maker, and the process is repeated until it is not worth gathering information, at which

point the option with the highest expected utility is chosen. Howard’s framework assumes

that the decision-maker is an active part of the process, and their preferences with regard

to the utility of outcomes, risk, and time are all elicited within the framework.

Howard proposes that this framework can be useful in a wide range of problems. Among

the most complex, he explicitly mentions the problem of power system planning [51].

3.3.1.1 Hazelrigg’s Design Framework

An updated approach to the use of decision theory in engineering product design can be

found in Hazelrigg [49]. Hazelrigg’s objective is a fully rational and rigorous theory of

engineering product design, and he develops his own framework, central to which is again

the use of utility theory.

Hazelrigg’s framework can be seen in Figure 10. It is described as a nested optimization

cycle. The creativity of the designer is explicitly invoked in the creation of a product

configuration. From this point, appropriate modeling is used to find the performance of the
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design as a function of a set of design (decision) variables. As in Howard’s framework, noise

variables represent the subjective beliefs of the designer. The preferences of the desicion-

maker are required with respect to outcomes, including preferences for risk (using a utility

theory approach) and time (using a discount rate approach). The performance of all possible

designs must be traced to their effects on those outcomes: if the desired outcome is to make

profit on a product, there must be modeling to estimate how the phyical performance and

pricing of a product will affect its sales and, ultimately, the profits derived from those sales.

The design process can then be formulated as an optimization problem, where decision

variables are adjusted to find the product design that maximizes the expected utility of

the decision-maker. This optimization loop is nested in a larger optimization loop, where

the product concept itself can be changed. Because the framework uses utility theory, and

every possible outcome can be mapped to an expected utility, all product concepts can be

compared to each other using a single metric.

In practice, Hazelrigg notes that there may be technical challenges. The optimization

space is huge, and there are many layers of modeling required. Additionally, there are

assumptions that may be difficult to meet in practice. Importantly, in order for the method

to be rigorous and rational, the concept of a “decision” must be strictly defined as having

the following properties:

1. A decision is a mental commitment to action, a commitment of resources.

2. A decision is made in the present, and is irrevocable. An part which is revocable is

not part of the decision.

3. A decsion is made by a single individual.

4. A decision is a choice from a set of alternatives

5. A decision is made to affect a desired outcome

6. All real decisions involve an element of risk

7. Decisions demand an expression of preferences
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For the most part, these characteristics correspond to the general colloquial usage of the

word “decision”. However, some of these aspects may differ somewhat from the general

usage of the word, and place specific restrictions on what kind of problems can be solved with

Hazelrigg’s design framework. Property 3, that a decision is made by a single individual,

is necessary in order that the decision be guaranteed to be rational. Hazelrigg invokes

Arrow’s impossibility theorem [5] to argue that any decision made by a group is susceptible

to irrationality. However, Hazelrigg acknowledges that in practice, engineering design is

performed by large groups of people, and methods of dealing with this must be found.

The last property, that decisions demand an expression of preferences, is not in itself

inherently restrictive, and it must ultimately be true. But Hazelrigg’s framework embeds

this preference expression early in the process, before the optimization step. In practice,

when the process extends over multiple people and layers of organizations, it could be

necessary to begin simulation before preference can be elicited.

Ultimately, Hazelrigg asserts that when it comes to a mathematically rigorous theory

of how design should be done, there is little room to change the process; but in order to

have a process that works in practice, it may be necessary to relax the strict rationality

requirement, and to develop practical approaches that attempt to minimize the negative

impacts of any irrationality which is introduced.

3.3.1.2 Multi-Attribute Utility Theory

Classically, utility theory deals with the utility of a single monetary quantity. Usually,

especially in the cases of for-profit companies, it is possible to specify some single quantity

such as profit as a single objective. Utility theory can just as easily deal with a single

non-monetary quantity. However, in cases where there truly are multiple objectives, some

method is needed for combining multiple metrics into a single measure of utility.

Utility theory for multiple objectives was developed starting in the 1960’s, with early

work by Pruzan and Jackson [94] and Ting [109]. Keeney and Raiffa elaborate in their

1976 text [64]. The method involves using decision-maker preference elicitation to first

31



www.manaraa.com

Config
MiIdeas

Preferences

Maximize
with respect to

Mi

E{u}

Detailed
design

xi Performance
attributes

ai

Exogenous
variables

y

Demand
q(t,a,P)

Beliefs

Revenue
R(t)

Costs
Ci Expected 

utility
E{u}

Maximize
with respect to

xi

Maximize
E{u}

wrt P(t)

xi E{u}

P(t)

Preferred 
design

Figure 10: Hazelrigg’s engineering design optimization framework [49].

build utility functions for each of the objectives. Then, if the independence of the utili-

ties of the objectives can be established, the utility functions are combined into a single

utility function. As with single-objective utility theory methods, the method prescribes

that the decision maker should choose the option with the highest expected utility. Once

again, preference elicitation is an integral part of the method, and in a simulation-based

optimization approach, decision-maker preferences must be elicited prior to optimization.

Multi-Attribute Utility Theory has been used in electric power planning [1] [115] [62] [63].

3.3.2 Choice of Equivalent Deterministic Problem Formulation

There are many options for transforming the problem of decision under uncertainty into an

equivalent deterministic one. The most rigorously developed approaches are probably those

that incorporate expected utility, though practical considerations may require the relaxation

of some assumptions. These methods have been used in practice [115] [62] [63]. The most

recent utility planning documents that were reviewed for this effort, however, relied on a

trade-off between expected cost of electricity and some measure of risk, when they used a

formal process at all (see Table 2). In order to make this effort more relatable to the current

status quo, the mean/risk paradigm will be used. However, some of the methods developed
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in this effort can be applied more widely, including within a utility theory framework; for

more discussion on this, please see the “future work” section in the final chapter.

In this research, robust design decisions will be made as a trade between measures of

expected performance and measures of risk. This is not the exact terminology typically used

in robust engineering, which tends to use “performance” and “variation” (or its opposite,

“robustness”). Nor is it used in finance: since finance has only a single benefit measure,

it is simply called by name, as “return” or “cost”, while the term “risk” is the same. In

this case, since the application is related to finance, the term “risk” will be used; and since

cost may not be the (only) objective, the general term “performance” will be used. So for

any single stochastic objective, measured by a “performance” metric, there will be a trade

between “expected performance” or simply “mean”, and “risk”.

In all test cases in this study, a single stochastic objective will be used, resulting in

a single measure of expected performance and a single measure of risk. This is directly

applicable to current energy portfolio selection problems, where usually only cost and cost

risk are considered as objectives (see Table 2 for risk metrics used by a selection of utilities).

The methods developed for this study should be usable without significant modification in

cases with multiple stochastic objectives, but a demonstration of this is beyond the scope

of the study.

3.3.3 Choice of Risk Measure

It has been established that this research will use the twin objectives of “mean” and “risk”.

Up until now, however, the measure of risk has been left generic and non-explicit.

The robust design literature tends to favor standard deviation or variance as a risk

measure [68][22][69][17][56]. In the financial literature, this is consistent with the usage

found in the genesis of portfolio theory, dating back to Markowitz in 1952 [75]. Several

energy utilities also use standard deviation as a measure of risk in their planning documents

[35][8]. However, standard deviation has fallen out of favor as a risk measure in finance.

The risk metrics used by 11 different utilities in their Integrated Resource Plans is shown

in Table 2.
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Table 2: Some Electric Power Utilities and their Choices of Risk Metric

Utility Risk Metric Decision Method Year of IRP Ref

Ameren Missouri VaR Weighted sum 2011 [2]
Xcel Energy VaR Informal 2010 [116]
Pacific Gas and Electric VaR Multi-Criteria 2007 [89]
Northwestern VaR - µ Portfolio Theory* 2009 [84]
Puget Sound Energy CVaR Informal 2011 [95]
PacifiCorp CVaR Portfolio Theory* 2011 [90]
Entergy Louisiana σ Portfolio Theory* 2010 [35]
Avista σ Portfolio Theory* 2009 [8]
Progress Energy Carolinas sensitivity Informal 2009 [93]
Idaho Power N/A Informal 2011 [53]
Florida Power and Light N/A Informal 2010 [37]

*All Portfolio Theory approaches also used scenarios for carbon price

The different utilities surveyed used a variety of risk metrics, with value at risk or a

variant the most common [2][84][89][116]. Value at risk (VaR) is defined for a particular

probability level, usually 5%. In finance, the 5% VaR is is simply the value of loss which

is expected to occur less than 5% of the time, see Figure 11(a), or simply the value of the

5th percentile of the predictive distribution of the losses [58]. Explicitly, for a maximization

problem:

V aRα = F−1(α) (4)

Where α is a probability level (again, usually taken to be 0.05), and F−1 is the inverse

cumulative distribution function of the returns.

For an energy utility, VaR is applied to the cost of energy. In this context, lower values

are better, and there is no “loss” or “gain”, simply higher or lower costs. Rather than a

5% VaR, then, the utility would instead be concerned with the 95% VaR, the cost which

energy is expected to remain below 95% of the time. Again, it is simply a percentile of the

cost distribution.

This concept of risk also jibes with the general definition of risk proposed by Kaplan

and Garrick, who define a risk as a consequence combined with a probability [59].

The financial literature also uses Conditional Value at Risk (CVaR) or Expected Short-

fall, which is shown to have theoretical advantages by [6]. CVaR is also specified at a
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CVaRα = E[ metric | metric > VaRα]
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Figure 11: Performance/Risk Terminology. Value at Risk (VaRα) is the αth percentile.
Conditional Value at Risk (CVaRα) is the expected value given that the metric exceeds
VaRα

probability level, generally 5%, and is simply the expected value of the losses that are

below a certain VaR level, or:

CVaRα =
1

α

∫ α

0
VaRγdγ (5)

Where α is the probability level, and the variable of integration γ is the probability level

for the VaR measure. For a minimization problem, this is re-stated as:

CVaRα =
1

1− α

∫ ∞
α

VaRγdγ (6)

This is shown conceptually in Figure 11. At least two energy utilities use CVaR as a

portfolio selection criteria [90][95].

In the context of this research, the measure of risk chosen is not a central question.

All three measures discussed here require quantification of the aleatory distribution of the

response, due to uncertainty in the environmental noise variables. If the aleatory response

distribution is known, the standard deviation, VaR, or CVaR can be computed. Later results

from the literature will be shown that allow analytical computation of standard deviation,

and a “VaR-like” risk metric will be used for the test cases, for the sake of computational
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speed. The overall method is general enough that it is meaningful regardless of what risk

measure is chosen.

For the sake of notation, aleatory mean will be written as µa, and an un-specified

aleatory risk measure will be written as ρa.

• Aleatory mean is µa

• Aleatory risk (generic) is ρa
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CHAPTER IV

BAYESIAN SURROGATE MODELS

Before discussing specific approaches to Robust/Multi-Objective/Expensive problems, it

is worthwhile to briefly touch on surrogate modeling, since it is found in many diverse

approaches and will be central to the new approach presented later.

Briefly, surrogate models are simply regressed fits which model the responses of a simu-

lation code as a function of its inputs. They are a representation of the designer’s knowledge

about a simulation, and predict the simulation responses at un-sampled input settings.

Early robust design exercises used polynomial equations, called Response Surface Equa-

tions [113][81], which due to their polynomial form can only accurately model relatively

smooth spaces, and in the quadratic forms typically used can only model unimodal spaces.

More complex spaces, with multiple modes or more non-linear behavior, can be mod-

eled with non-parametric models, that is, models that make less restrictive assumptions

about the shape of the space (though they still assume some degree of smoothness). Non-

parametric models include Radial Basis Functions (RBFs)[54], Multi-Adaptive Regressive

Splines (MARS), Neural Networks [104], and Bayesian treatments such as Kriging [98] (also

known as Gaussian Process models) and linear Bayesian models [18].

A full and detailed review of surrogate modeling methods is not attempted here; there

are many good textbooks, for example Bishop [18]. However, a brief overview of Bayesian

surrogates is warranted, since they are central to many advanced methods, and will be

important to the proposed method.

Any prediction of a simulation response at an un-sampled point will be subject to

epistemic uncertainty. In non-Bayesian regression, an effort is made to ensure that this

uncertainty is below some acceptable threshold, using goodness of fit metrics such as R2

and cross-validation error.

In Bayesian regression, on the other hand, the epistemic uncertainty of the model is
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quantified directly using an application of Bayes’ Theory. Based on some prior knowledge

of the space, the designer will impose some kind of assumptions about the shape of the

space and how epistemic uncertainty will behave. Based on this prior and informed by

the data, a Bayesian model will give a probability distribution representing the epistemic

uncertainty at un-sampled points.

4.1 Linear Bayesian Surrogates

The following section follows the textbook by Bishop [18] unless otherwise noted, with some

minor notational differences.

4.1.1 Least Squares Regression

Assume that the designer has data consisting of a series of observations, {X(n)}, for n =

1 . . . N , where N is the total number of observations. Say there are M variables, and each

observation is a row vector:

X(n) = [X1, . . . Xm, . . . XM ]

All the N observations together, taken as a whole, are a matrix:

X =



X(1)

...

X(n)

...

X(N)


Each observation X(n) will also have a response value, T (n), so the entire set of response

observations is:

T =



T (1)

...

T (n)

...

T (N)


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For convenience, the set of all input and output variables will be called D = (X,T), the

“data set”.

In a non-Bayesian context, a linear model is a regression model where the data is ex-

plained by a series of basis functions, φl(X), each multiplied by a linear coefficient, wl. In

linear algebra notation, this can be written as:

T̂ (X,w) = wTφ =



w1

...

wl
...

wL



T 

φ1

...

φl
...

φL


= w1φ1(X) + · · ·+ wlφl(X) + · · ·+ wLφL(X) (7)

These basis functions can be any function of X, from the familiar polynomials of response

surfaces, to sine waves, to sigmoids, to Gaussians. In practice, one of the bases should

always be a constant, to act as a bias term.

In least squares regression, the weights in the vector w = [wl . . . wL]T are adjusted so

that the sum of squares error over the dataset is minimized. This can be easily accomplished

with a matrix inversion. First, a matrix Φ is created:

Φ =



φ1(X(1)) φ2(X(1)) . . . φL(X(1))

φ1(X(2)) φ2(X(2)) . . . φL(X(2))

...
...

. . .
...

φ1(X(N)) φ2(X(N)) . . . φL(X(N))


This is called the design matrix, and it contains the effects of all of the input data fed

through all of the basis functions. To find the least-squares estimate of w, the details will

be omitted, but the result is:

wML = (ΦTΦ)−1ΦTT (8)

Here the subscript ML denotes that from a Bayesian perspective, this represents the most

likely vector w given the data D.
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4.1.2 Bayesian Regression

From a Bayesian perspective, wML is only the most likely w, not the whole story. The

data D does not represent complete knowledge about the whole space, and so w can be

considered a random variable. It is assumed that the “true” space really does follow the

form of the chosen basis functions, with deviations caused by zero-mean random error ε:

ε = N (ε|0, β−1)

Here β = 1/σ2 is the precision of the random noise. Precision is specified rather than

variance for later notational convenience.

Assuming some prior distribution p0(w), Bayes theorem allows the calculation of a

posterior distribution on the weights, given the data. A prior is assumed of the form:

p0(w) = N (w|0,S0)

Which means that the sign of w is not known (thus zero mean), and the covariance matrix

S0 is the prior assumed covariance between all of the weights. For a moment, assume that

it is known; this means that the designer has some kind of prior knowledge about how

much the weights will deviate from zero. For computational tractability, and because there

generally is no prior reason to think that any one weight would be correlated with another,

S0 will be assumed to be a diagonal matrix:

S0 = diag[α−1
1 . . . α−1

l . . . α−1
L ]

Where the elements of the diagonal, α−1
l are the prior variances on the weight distributions.

Again, the αl elements are precisions.

A derivation is not given here (see Bishop for readable explanations [18]), but an appli-

cation of Bayes’ theorem using the design matrix Φ and given the response data T yields

the posterior distribution on w, which is a joint normal distribution of the form:

p(w|T) = N (w|mN ,SN ) (9)
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Where:

mN = βSNΦTT) (10)

SN = (S−1
0 + βΦTΦ)−1 (11)

The current situation, then, is that for a known global error given by precision β, and a

known set of prior precisions for the weights, {αl}, posterior distributions on the weights

can be found using (9). These posterior distributions will quantify the Bayesian uncertainty

in the model.

4.1.3 Predictive Distribution

From this model uncertainty, as quantified by p(w|T), a predictive distribution on the

response of the model can be derived. Again, the derivation is not provided here, but the

result is, for any new un-sampled point X:

p(T̂ |X,T,S0, β) = N (T̂ |, µT̂ , σ
2
T̂

(X)) (12)

µT̂ (X) = mT
Nφ(X) (13)

σ2
T̂

(X) =
1

β
+ φ(X)TSNφ(X) (14)

Where T̂ is the prediction, µT̂ is its mean, and σ2
T̂

(X) is its variance.

There is a problem, however: this formulation requires that the designer know the global

precision β with perfect accuracy. It also requires a prior on the weight precisions, {αl},

and an unrealistic mis-specification of these values may produce a poor fit.

Ideally, the designer could add another layer of Bayes theorem, and specify a “hyper-

prior” distribution on the {αl} and β priors, then let the data inform the posteriors of the

priors. In practice, adding layers of Bayes-ification becomes computationally intractable,

and various approximations are used.

4.1.4 Evidence Approximation

In Evidence Approximation, also called Type-II maximum likelihood estimation, the most

likely values of {αl} and β are found, and these are used as point estimates. An expression

for the marginal likelihood of the data, given values of {αl} and β, is maximized numerically.
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In practice, it is numerically easier to maximize the log of the likelihood function, which is

presented here without derivation. For details, the reader is directed to MacKay [74].

ln p(T|S0, β) = −N
2

ln(2π)− 1

2
ln |C| − 1

2
TTC−1T (15)

Where:

C = β−1I + ΦS0Φ
T (16)

Here, β and {αl} are inputs to (16), and they can be adjusted with an optimizer to maximize

(15).

4.1.5 Linear Bayesian Models in Practice

Many details of the implementation of Bayesian linear models have been concealed thus far

by not specifying a particular set of basis functions, {φl(X)}. If the designer has a good

idea of what the space looks like, then a “parametric” model that matches the designer’s

expectations can be used. For example, if the designer has a good idea that the space

will look like a polynomial, then Response Surface Equation polynomials could be used.

However, if the functions that are chosen are not capable of representing the true function

very well, the fit will be poor.

If there is little knowledge of the space, and it is potentially multi-modal or “poorly

behaved”, the designer may wish to use non-parametric models. Radial Basis Functions,

often used in a non-Bayesian context, can be used to approximate arbitrary landscapes, as

interpolators [18]. The basic idea is to center a function around each data point that locally

influences the predicted values. A common choice is the Gaussian, which takes the form:

φn(X) = exp

(
−‖X −X

(n)‖2

2h2

)
(17)

Where h is a global parameter common to all of the basis functions, and the ‖...‖2 represents

Euclidean distance. With radial basis functions, there is one function per data point; for a

non-Gaussian regression, a properly fitted RBF is an interpolator.

The term h is left up to the designer to specify; it is a tuning parameter, which can be

thought of as the size of the surface features being modeled. In practice, a poorly chosen h

can result in a poorly fitting model.
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To select h in practice, classical frequentist notions of fit error can be combined with

the Bayesian models, and cross-validation methods can be used to iteratively find a value

that provides good fit.

The function given in (17) belongs to a class of functions called kernel functions that

operate on pairs of points, represented generically as k(X,X ′).

4.1.6 Encoding Epistemic Uncertainty

Though this section has glossed over most of the mathematical details, the treatment given

here is just about sufficient to program a Bayesian linear regression code. Most importantly,

it should be sufficient to understand one of the methods proposed in Chapter 6. The

crucial nugget of take-away information is simply this: assuming that the model form is

correct, a Bayesian linear model encodes its epistemic uncertainty in the posterior

distribution of the weights, N (w|mN ,SN ) (9). All uncertainty shown by the model is

a function of this multivariate Gaussian distribution.

4.2 Gaussian Process Models

In their influential 1989 paper, Sacks et al. advocated the use of Bayesian models for

computer experiments. Notably, they advocated the use of Gaussian Process (GP) models

[98]. In a GP model, the un-sampled output of a computer code is treated as a random

process. In most implementations, a GP model treats already sampled points as known

with perfect accuracy. This makes sense for many computer modeling applications, where

a set of inputs will always produce the same outputs. Uncertainty about the predicted

function will increase with distance from samples.

In a general GP model, the true function T (X) is assumed to be a realization of a

Gaussian random process that is a function of the space, G(X). It can be assumed to have

a linear prior mean function, φ(X)Tβ. This is the approach followed here. The math follows

primarily O’Hagan [88], and to some extent Forrester [38]. Like in O’Hagan’s papers, it will

be assumed that there are weak prior distributions on the linear function weights, β, and

the global variance parameter, σ2. The latter technically makes the surrogate a t-Process

(tP), rather than a Gaussian Process [88], though the term “Gaussian Process” will be used
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regardless. It is further assumed that all hyperparameters in the correlation function have

fixed (optimized) values.

4.2.1 Gaussian Process Model Regression

As in the linear Bayesian model, it is assumed that the simulation code has been run, and

data has been collected. The input data consists of individual observations:

X(n) = [X1, . . . Xm, . . . XM ]

All the N observations together, taken as a whole, are a matrix:

X =



X(1)

...

X(n)

...

X(N)


The entire set of N response observations is:

T =



T (1)

...

T (n)

...

T (N)


The data set will be called D = (X,T).

It is assumed that the GP has a linear model as a prior. For the purposes of this

dissertation, the linear model will consist of a mean term and one linear term for each

input dimension (note that the two words linear here have different meanings).

φ(X) =



1 X
(1)
1 , . . . X

(1)
m , . . . X

(1)
M

...
...

...
...

1 X
(n)
1 , . . . X

(n)
m , . . . X

(n)
M

...
...

...
...

1 X
(N)
1 , . . . X

(N)
m , . . . X

(N)
M


(18)
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The responses at any pair of points X(i) and X(j) are assumed to covary as:

Cov[T (X(i)), T (X(j))] = σ̂2k(X(i), X(j)) (19)

The term k(X(i), X(j)) is a kernel function:

k(X(i), X(j)) = exp
(
−

M∑
m=1

θm|X(i)
m −X(j)

m |pm
)

(20)

where m indexes over the input dimensions. Note that the terms θm and pm are un-defined

thus far, and will be tuning parameters eventually. Notationally, they will be referred to as

vectors, θ = {θm},p = {pm}.

When the a correlation kernel of this form is used, the model can be called a Kriging

model, perhaps the most commonly used GP for engineering design.

Now a correlation matrix can be constructed:

Ψ =


k(X(1), X(1)) . . . k(X(1), X(N))

...
. . .

...

k(X(N), X(1)) . . . k(X(N), X(N))

 (21)

4.2.2 Estimating the Tuning Parameters

Before the model can be used for prediction, the parameters θ and p must be tuned. Because

a full Bayesian treatment would be computationally unwieldy, it can be approached with a

Maximum Likelihood method. Derivation will not be provided here, but computationally,

it involves the following steps. First, a maximum likelihood estimate is found for a global

variance parameter:

σ̂2 =
1

N − L− 2
TT (Ψ−1 −GWGT )T (22)

Where L is the number of basis vectors in the prior, and the terms G and W are defined

as:

G = Ψ−1φ (23)

W = (φTΨ−1φ)−1 (24)

45



www.manaraa.com

These are then used to create a ln-likelihood function,

ln(p(T|θ,p))) ≈ −n
2

ln(σ̂2)− 1

2
ln |Ψ| (25)

The ln-likelihood function can be fed into an optimizer, and maximized as a function of θ

and p. In practice, all p values can be set to 2.0 and only the θ modified.

This completes the regression stage.

4.2.3 Prediction with a Kriging Model

Now say that the model is to be used for prediction at an un-observed data point, x.

A vector of correlations is constructed between the observed data and the new point:

ψ =


k(X(1), x)

...

k(X(N), x)

 (26)

Now the prediction T̂ (x) is Gaussian:

T̂ (x) = N (T̂ |µT̂ , σ
2
T̂

) (27)

and the posterior epistemic mean µT̂ and variance σ2
T̂

can be calculated [38][60][88] from:

µT̂ (x) = φ(x)T β̂ + ψTΨ−1(T − φ(X)β̂) (28)

Where φ(x) is the prior basis functions evaluated at the new point x, and φ(X) is the

same set of basis functions evaluated for the original data X. The term β̂ is the posterior

predictive mean of the basis function weights:

β̂ = WGTT (29)

For any pair of un-sampled points x(i) and x(j), the predictive covariance can be calcu-

lated as:

Cov[T̂ (x(i)), T̂ (x(j))] = σ̂2[k(x(i), x(j))− ψ(x(i))TΨ−1ψ(x(j))

+ {φ(x(i))−GTψ(x(i))}TW{φ(x(j))−GTψ(x(j))}] (30)
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Where σ̂2 is the same global variance parameter used in regression.

Note that unlike in a linear Bayesian model, epistemic uncertainty is not encoded in a

joint posterior weight distribution. Instead, it is expressed through the correlation structure.

This will be important in a later section, namely in the discussion of Monte Carlo methods

for the calculation of second-order probabilities.
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CHAPTER V

SAMPLING METHODS FOR SIMULATION-BASED ROBUST

DESIGN

The previous chapter described surrogate modeling methods for estimating the response of

a simulation code based on sampled data. But how are the data samples selected? The

usefulness of the surrogate will depend critically on the placement of samples both in design

and noise space.

This chapter describes the sampling methods found in the robust design literature.

The methods are broadly classed as design of experiments, when all points are selected

prior to evaluating the simulation code, and sequential sampling, when information from

previous samples is used to select new samples. Bear in mind that the overall objective is to

find a mean/risk frontier, which is the domain of optimization. However, the optimization

literature does not generally refer to design of experiments, even though DoE can be used

for purposes of optimization. Optimization almost always refers to sequential sampling

methods.

Note also that there are many optimization methods that do not fit surrogates to the

model at all. When surrogates are fit to the data, they can be used for more than just

optimization; they can also be used for visualization and exploration. So a sequential

sampling method that fits surrogates to the data is more than just an optimization method,

though it might well be used effectively for optimization.

5.1 Design of Experiments

The earliest robust design methods, dating back to Taguchi [107], were based on a design

of experiments approach, and there are many iterations and modifications that have arisen

since.

A design of experiments approach uses a fixed design, or list of simulation cases to run.

Response data is collected, and the effects of the various factors can be estimated, as well as
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higher-level effects and interactions between the factors. The more cases are run, the more

complex the effects that can be discerned. Generally, in engineering design, a surrogate

model is fit to the data.

In Type I robust design, where noise variables are present, there are two basic types of

experimental designs: crossed arrays and combined arrays. The two approaches differ in

their treatment of design and noise variables.

5.1.1 Crossed Array Designs

The earliest Robust Design approaches, proposed by Taguchi, used a set of “crossed” or

“inner and outer” arrays to deal with design and noise variables. An “inner” design of

experiments specified settings of the design variables. At every run in this array, a full

set of noise cases were run, specified by the “outer” array. This configuration is shown

conceptually in Figure 12. The noise runs were used to find some measure of robustness

[107]. These noise cases can be a specific design, as practiced by Taguchi, or they can be a

series of Monte Carlo runs that depend on assumed distributions for the noise variables.

Figure 12: Design of Experiments, crossed arrays. (a) Inner design array (ND = 5) (b)
Outer noise array (NS = 10). Total samples for this design is 5× 10 = 50

Taguchi himself did not use surrogate models, but later approaches combined the in-

ner/outer array concept with surrogates [72][81]. Since robustness measures can be found

at every design point, a surrogate can be fit to those measures (or to a single measure of

robustness, depending on the method used). Thus with an inner/outer array approach, the
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input variables to the surrogate are the design variables only.

With crossed arrays, the design of the arrays can be chosen independently. Indeed, there

is no reason the noise array need even be of the same type as the design array. Since the

objective of running the noise array is to estimate the distribution of the result, and not to

estimate the shape of the response, the designer can use an array designed specifically for

this purpose. Most basically, Monte Carlo simulation can be used to randomly place points

in noise space, and the output statistics can be calculated numerically; however, this has

low efficiency. A more efficient approach is to use Latin Hypercube Sampling (LHS) [77].

If the designer is able to make samples sequentially, Markov Chain Monte Carlo (MCMC)

methods can be used [3], at which point the approach is no longer strictly a design of

experiments, because all of the runs cannot be specified beforehand. However, it still

retains most of the advantages of a DoE approach to computer experiments: it represents

the global design space accurately, and it can still be parallelized by running each design

point separately. An advantage of the MCMC approach is that it can be used to find any

statistic of interest, including value at risk or conditional value at risk.

Another sequential sampling approach was presented by Rasmussen and Ghahramani

in 2003, called Bayesian Monte Carlo sampling. The authors fit a Gaussian Process model,

and use it to estimate statistics [96]. Kumar further investigated Bayesian Monte Carlo for

use in robust design[67].

5.1.2 Combined Array Designs

One criticism of Taguchi-style inner and outer arrays was that the method was inefficient

in terms of the number of experiments required. Many subsequent approaches instead

used combined arrays, where the design and noise variables were lumped together for the

purpose of experimental design, and a surrogate model was fit to both sets of variables

simultaneously. This type of design is shown conceptually in Figure 13.

Welch et al. first proposed this approach for robust design, and found that for their

application the use of a combined array resulted not only in reduced simulation runs but

better accuracy than an inner/outer array approach. Their robustness metric was a squared
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Figure 13: Design of Experiments, combined array

loss metric, or the deviation of performance from a target squared. This loss function,

mapped over the design variables, was fit poorly by the polynomial response surface equa-

tions that they were using, and this was proposed as the reason for the poor performance

of the inner/outer array approach. The “pure” performance function, on the other hand,

as a function of both design and noise variables, was fit better by polynomials. This was

proposed as the reason for the improved accuracy of the combined approach [113].

Shoemaker et al. also compared combined and inner/outer array approaches, and also

found a reduction in computational cost with a combined approach. However, they note

that the effectiveness of the combined approach depends more critically on how well the

surrogate model fits, whereas an inner/outer array approach allows the robustness measures

to be estimated directly [103]. This is an important distinction. With a combined array

approach, the aleatory noise distributions must be propagated through a surrogate model

in order to estimate the aleatory statistics, and any errors in the surrogate model will

be propagated as well, resulting in errors in the statistics. With an outer array of noise

variables, on the other hand, it may be possible to estimate the statistics more directly,

without any surrogate at all; or if a surrogate is used, it is a local surrogate of noise

variables only.

Chen et al. used a combined array approach to robust design, with mean of the response

and variance of the response as twin objectives. They fit polynomial response surface

equations to the design and noise variables, and then from those used analytic expressions
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for the mean and variance of the response, assuming that the noise factors had Gaussian

distributions. They choose a final design using the compromise decision support problem

(DSP) approach [22].

Mavris et al. used the combined array approach in a design method called Robust Design

Simulation, or RDS. In RDS, a combined surrogate is fit to both design and noise variables.

Then, at design points of interest, Monte Carlo simulation can be used to vary the noise

variables, and the aleatory statistics can be estimated by running the surrogates. Since

the surrogates are cheap, large numbers of Monte Carlo cases can be run inexpensively. A

second design of experiments is chosen, this time only for the design variables, and this

Monte Carlo estimation is run to find the aleatory statistics of interest for every case.

Finally, new surrogates are fit to those aleatory statistics of interest (Mavris et al. use

probability of success), as a function of the design variables only [76]. It is worth noting

that the accuracy of these surrogates depend not only on their fit, but also on the fit of

the original surrogates used to model the responses as a function of both design and noise

variables, and on the accuracy of the Monte Carlo methods.

From the literature, it would seem impossible to generalize whether combined array or

inner/outer array approaches result in greater accuracy. Welch [113] and Shoemaker [103]

found higher efficiency with a combined approach, and Welch even found higher accuracy

with the combined array for fewer simulation runs. But Shoemaker points out that the

effectiveness of a combined array depends critically on the quality of the fit [103], and

indeed a paper by Frey and Li found that in cases where the degree of the true function

was greater than the degree of the fit, an inner/outer array approach showed better results

than the combined approach [40].

Making generalization even more difficult, these papers all deal with cases where the

space is well-behaved and unimodal, and the surrogate fits are all polynomial response

surface equations. If the space is multimodal, a more generalized non-parametric model

such as Kriging [98][57] or Radial Basis Functions (RBFs) [54] will be more appropriate.

In such scenarios, space-filling designs such as Latin Hypercubes are preferred. When a

spacial correlation structure is assumed as part of the model structure, as it is in Kriging
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and RBFs, designs are desired which maximize entropy [102][98][24][77][80]. What that

means computationally will be discussed later.

Bates et al. used a combined array method with a Kriging model, and compared it with

a Taguchi-style crossed array method, but it is difficult to draw conclusions because only

a single test case was run, different surrogate types were used in both cases, and neither

method performed better than the other [14].

There is a mechanism by which a combined array approach can result in greater effi-

ciency of knowledge use: in an inner/outer array approach, information about the shape of

the space does not propagate beyond each design point, whereas with a combined array the

response model will have global knowledge of noise behavior. Therefore if a combined and a

crossed array both have surrogates that make equally efficient use of the information avail-

able to them, one would expect the combined array, having more information available to

it, would achieve the overall design objectives more efficiently. However, fitting a surrogate

to a very large number of data points may be challenging or lead to numerical problems (as

will be encountered in a later chapter).

A designer, given a particular robust design problem, will have to choose between using

combined arrays or crossed arrays. As a matter of research, this question cannot be answered

for all cases. However, there are certain properties of the problem that one would expect

to affect the choice. These include difficult-to-quantify properties such as the shape of the

space and its non-linearity with respect to noise variables. However, one would also expect

that the number of noise variables would affect the relative merits of crossed vs. combined

arrays, and this leads to a research question:

Research Question 1: For finding mean/risk Pareto frontiers, how does the relative

efficiency of combined and crossed arrays depend on the number of noise variables?

“Efficiency” must be defined, and a working definition will be presented later. For now,

however, it will suffice to define it imprecisely as meaning better accuracy in representing

the Pareto set for the same number of function calls, or fewer function calls for the same
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accuracy.

Even this question cannot be answered fully. The possible number of noise variables

is infinite, and there may still be interaction effects with other problem characteristics.

However, a series of sensitivity experiments around a baseline can lend evidence to support

a hypothesis on this matter. Experimental design details will be left to a later section.

Crossed and combined array methods estimate the aleatory statistics using different

methods. In crossed array methods, at every candidate design, an experiment is carried out

to estimate the statistics. Statistics may be estimated with Monte Carlo methods, which

do not suffer in accuracy as the dimensionality of the space increases [18].

Combined array methods, on the other hand, require that the effects of the noise vari-

ables be modeled explicitly with a surrogate. Estimates of the statistics will depend on

the surrogate fit, as pointed out by [103], and surrogate fit quality suffers as the number of

dimensions increases, due to the “curse of dimensionality” [18].

The following hypothesis therefore seems reasonable:

Hypothesis 1: As the number of noise variables increases, the efficiency of combined

array methods will suffer relative to the efficiency of crossed array methods.

Note, however, that the reasoning behind this hypothesis is based very large numbers

of input variables causing a decrease in the quality of a surrogate fit. For smaller numbers

of noise variables, this might not be a strong effect, and there might be other effects that

would cause the reverse.

Again, proposed experiments will be left to a later chapter, and it should be pointed out

that it will be impossible to generally prove this hypothesis, but a well-chosen experiment

should yield evidence one way or the other.

5.2 Sequential Sampling Approaches

In the design of experiments approaches described in the previous section, an experimental

design is selected so that over the design variable ranges of interest, there is uniformly or

near-uniformly high accuracy. However, in practice the designer may not care equally about

54



www.manaraa.com

all areas of the design space. Given the opportunity, the designer might willingly sacrifice

global accuracy for increased knowledge at or around the Pareto frontier. This can be

achieved by using knowledge from previous samples to guide the selection of future samples

around the frontier. This is domain of multi-objective optimization.

A review of optimization methods applied to robust design problems can be found

in Beyer and Sendhoff [17]. This section will restrict its focus to methods that can be

applied to a mean/risk decomposition approach. It will also ignore methods which are only

applicable to linear programming problems; though such methods can be used for certain

simple portfolios, the same factors that motivate the use of simulation in energy portfolio

selection also preclude the use of linear programming approaches.

5.2.1 Single Objective, Multi-Objective, and Robust Optimization

Most optimization problems and techniques concern the minimization of a single objective

function. In such cases, the optimizer seeks a single design, and only needs to characterize

the space to the extent necessary to reject all other portions of the space as inferior.

However, this is a multi-objective problem. At the very least, there are the twin ob-

jectives of mean performance and risk, and there may be multiple pairs of such objectives.

There are a number of methods for applying optimization techniques to such problems, and

collectively they can be referred to as robust design optimization.

Most simply, the multiple objectives can be aggregated into a single objective, and

standard optimization methods can be used. However, this requires some a priori preference

structure, and it is assumed for this problem that no such preference structure is yet known.

Therefore, such methods will not be discussed.

If preferences are not known, then the Pareto frontier (“effient frontier”) of non-dominated

designs must be found. A number of methods exist for finding such frontiers, all of them

modified versions of single-objective optimization methods. The most well-known methods

are modified evolutionary algorithms. Also found in the literature are statistical improve-

ment methods. The following sections will describe the relevant optimization techniques in

the single-objective case only as far as needed to discuss their application to multi-objective
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problems; and further, the focus will be on applications to robust design problems.

Multi-objective particle swarm methods can be found in the literature [97], but as there

are no papers applying them to robust design problems, they are not discussed here. It

is worth noting, though, that any multi-objective optimization method may be used with

“crossed” arrays to solve a robust design problem. At every design point explored by the

optimizer, the objective functions of mean and risk can simply be estimated with an “outer”

array. There is no longer an “inner array”, but rather an inner loop, but the term “crossed

arrays” will still be used in this scenario.

5.2.2 Evolutionary Algorithms

In an evolutionary algorithm, a set of of candidate designs (called the population) are

evolved using a mechanism inspired by biological evolution. The “fittest” (most optimal)

individuals are “bred” with each other, producing new “generations” of offspring that bear

traits of their parents along with random “mutations”. The most popular methods for

multi-objective design are evolutionary algorithms, where successive generations have sub-

populations that move closer and closer to the true Pareto frontier. Two popular algorithms

are NSGA-ii [28] and SPEA2 [117].

A number of sources in the literature have used surrogate models to enhance the per-

formance of multi-objective evolutionary algorithms. These include efforts by Chafekar

et al.[20], Farina [36], Nain and Deb [82], and Gaspar-Cunha and Vieira [41]. Generally,

improved performance was seen.

5.2.2.1 Evolutionary Algorithms for Robust Design

A multitude of authors have used evolutionary algorithms for the purpose of robust design.

Jin and Branke reviewed the state of the art in evolutionary algorithms applied to robust

design in 2005 [55], and Beyer and Sendhoff also review several instances in the literature

[17]. A subset of those efforts have focused on finding Mean/Risk frontiers for Type I

problems. Sharma et al. use NSGA-ii to optimize mean and variance; at every design

point, they run 5,000 Monte Carlo samples to estimate the aleatory statistics [100]. Jin and

Sendhoff trade between variance and nominal (rather than mean) value, and they mention
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an application to Type I robust design, though the examples are for Type II [56]. Tan and

Goh consider the case of multiple stochastic objectives, each broken into a measure of risk

and a measure of central tendency (though they, like Jin and Sendhoff, consider nominal

rather than mean performance) [108].

A surrogate-enhanced evolutionary algorithm was used specifically for Type I robust

design by Kumar [67]. His algorithm is used to solve the exact type of problem proposed

here, and a conceptual description is shown in Figure 14. Kumar’s method is a crossed-

array-type method. First, Kumar runs a sparse design of experiments in design space. At

every design, he uses a method called Bayesian Monte Carlo, wherein he fits a Gaussian

Process surrogate model to the noise variables only, and uses this to estimate the aleatory

mean and standard deviation for that design. He also uses that Kriging model to estimate

the uncertainty in those statistics, and if the uncertainty is too high, he samples additional

noise points, until he has adequate estimates of the aleatory mean and standard deviation

for all design points.

Kumar then fits two separate Kriging models, one to the aleatory mean and one to the

aleatory standard deviation. He uses these Kriging models to enhance an NSGA-ii multi-

objective optimizer, by optimizing the Kriging models and running the full Bayesian Monte

Carlo only at the optimal set of points, once the optimizer converges.

An (admitted) flaw in Kumar’s method is that it does not explore the space very well.

If, after the initial population, a region of the space is a part of the true Pareto frontier but

is not thought to be, the optimizer may never reach it. The method sounds promising for

solving Type I robust design problems with fewer function calls than DoE methods, though

no comparisons are given and the relative efficiency is unclear.

To reduce function calls further and to increase exploration, Kumar tries a modified

method. He reduces the number of Bayesian Monte Carlo samples and allows a higher

epistemic uncertainty in the aleatory statistics. For his twin Kriging models of aleatory

mean and standard deviation, he uses a modified form that fits to noisy functions, and uses

a modified fitness function that allows for a “fuzzy” Pareto frontier.
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Figure 14: Kumar’s method for optimization of mean and standard deviation. For a popu-
lation of designs D∗1...D

∗
N (a), Bayesian Monte Carlo Simulation (BMCS) is used to estimate

the mean and standard deviation (b). These are used to update Kriging models over the
design space (one for each statistic) (c), and NSGA-ii is used to optimize with these models
(d). The Pareto population is fed back into step (a) [67]

This method has many characteristics which potentially can reduce the number of func-

tion calls. It replaces Monte Carlo sampling on the noise variables with a “surrogate-

enhanced” Monte Carlo that uses fewer function calls. It also uses surrogates to enhance

an NSGA-ii optimizer. The lack of exploration of the previous method is potentially ame-

liorated as well. However, no implementation results are given, and it is unclear whether

this method will perform well.

5.2.3 Statistical Improvement Methods

Statistical improvement methods are a class of optimization methods that rely on Bayesian

surrogate models to guide successive samples. First introduced in some form by Mockus et

al. in 1978 [79], its usage became more widespread after it was picked up by Cox and John

in 1997 [23], and implemented in its now-common form by Jones et al. in 1998 as Efficient

Global Optimization, or “EGO” [57]. Descriptions can be found in several texts, including
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Keane and Nair [61] and Forrester [38].

For a single objective, statistical improvement methods work as follows. Aspects are

shown graphically for a simplified one-dimensional case in Figure 15. First, a sparse design

of experiments is run, the current best design Dbest is noted, and a Bayesian surrogate is

fitted. This surrogate must have zero uncertainty at un-sampled points; in practice, this

generally means a Gaussian Process/Kriging model.

Next, at all candidate designs which might be sampled, the posterior predictive distribu-

tion is used to find either either the Probability of Improvement or the Expected Improvement

relative to Dbest.

The Probability of Improvement, or P(I) is just the probability that a design sampled

at a particular design, D∗, will be better than the current best design, Dbest, or (for a

minimization problem) [38]:

P [I](D∗) =

∫ Dbest

−∞
pD

∗
Y (δ)dδ (31)

Where pD
∗

Y (δ) is the posterior probability density function for the objective Y at design D∗.

Another criteria which can be used is the Expected Improvement, or E[I], which is

defined as:

E[I](D∗) =

∫ Dbest

−∞
δ · pD∗

Y (δ)dδ (32)

(33)

And can be thought of as [57]:

E[I](D∗) = E[max (0, Y best − Y (D∗))] (34)

An optimization is performed over the space to find the candidate design with the

greatest E[I] or P(I), and this point is sampled. The Bayesian surrogate is updated, and

the process is repeated.

Statistical improvement methods automatically trade between exploring the space to

ensure that good regions don’t go overlooked, and exploiting its current best guess of where

the best regions lie. In areas where the epistemic uncertainty is high due to lack of samples,
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Figure 15: Statistical Improvement method, (a) Bayesian Surrogate fit to data, and the
predictive distribution shown at a single point. The current best point Dbest is marked
with a vertical line, and the probability density below Dbest is shown shaded (b) Expected
Improvement for all D.

the E[I] and P(I) will be high due to the long tail of the distribution; and if expected value

of a region is high, E[I] and P(I) will also be high. The method will not sample at existing

data points, because the uncertainty is zero and therefore the probability of improving is

zero. It is more efficient than a Design of Experiments global sampling approach because

it takes few samples (that is, allows high uncertainty) in regions of the design space where

it is confident that the performance is poor.

This method has been shown to work very well in practical design problems [57].

Sobester et al. compare the method with different sizes of initial DoE samples. They

find that the effectiveness of the method does depend on this initial sample, and that there

is an optimal value. Therefore, they implicitly find that E[I] works better than a pure design

of experiments, for the functions and sample sizes they tested [105].

A point made by Sobester et al. is that if the true objective function is known to be

well-behaved and unimodal, there is really no need to balance between exploring unknown

areas and exploiting the expected optimum; a good strategy might be a simple “greedy”

strategy of sampling where the surrogate thinks the function is best [105]. However, if the
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function is multi-model or less predictable, this could result in finding a local optimum.

In practice, expensive simulation codes are often run on large computer clusters, and it is

therefore desirable to parallelize any optimization algorithm. E[I] and P(I) are not trivial to

parallelize. The problem was explored by Schonlau in his 1997 PhD thesis [99]. Ginsbourger

et al. further discuss methods for selecting multiple designs to run simultaneously, which

they refer to as q-E[I]. The challenge is essentially one of of finding a set of q points that

collectively reduce uncertainty about the location of the optimum. They define the q-E[I]

metric as:

E[I](Dn+1, . . . , DN+q) = E[max{(Y best − Y (DN+1))+, . . . , (Y best − Y (DN+q))+}] (35)

Where again Y best is the current best sampled point, N is the current number of samples,

and the ()+ superscript indicates that only improvements are considered. Ginsbourger et

al. compare several analytical approximations for finding q-E[I], as well as a direct Monte

Carlo approach involving random Gaussian Process surfaces [43]. This will not be a focus of

this document, but in practice the ability to parallelize the sampling process should prove

useful.

5.2.3.1 Multi-Objective Statistical Improvement

There are a number of instances in the literature where statistical improvement methods

have been adapted to multi-objective problems. Though each author uses a different term,

they will here be collectively referred to as Multi-Objective Statistical Improvement (MOSI)

methods.

Emmerich et al. explored and tested a number of possible criteria, including a lower-

confidence-bounds based method, a method based on an expected increase in hypervol-

ume, and a multi-dimensional expected improvement method. The multi-dimensional E[I]

method required multi-dimensional integration, which they suggested could be achieved

with piecewise numerical integration or Monte Carlo integration. This method, as well as

the hypervolume method, required some kind of relative weighting on the objectives. The

authors preferred the lower-confidence-bound method as more numerically tractable and as

not requiring weights. They found that, compared to NSGA-ii and a surrogate-enhanced
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NSGA-ii, the statistical improvement methods resulted in better exploration of the space

and better coverage of the Pareto frontier [32]. In later works, Emmerich et al. developed

closed-form and computationally efficient methods for computing the hypervolume-based

E[I] method [30], and Emmerich provides MATLAB code on his website for a two-objective

case [31]. More details on this hypervolume approach will be provided in the next chapter,

and extended to the case of an uncertain Pareto set.

Keane derived a (very long) closed-form expression for multi-dimensional expected im-

provement and probability of improvement, for the special case of exactly two objectives

[60]. In two engineering test cases, he found that the methods performed better than both

NSGA-ii and a surrogate-enhanced version of NSGA-ii.

Another implementation of multi-objective expected improvement can be found in Bautista’s

PhD thesis [15], called the EmaX algorithm. Bautista specifies a minimax metric for ex-

pected Pareto improvement which can be implemented using Monte Carlo methods for an

arbitrary number of objectives, and she provides test cases with more than two dimensions.

Knowles developed a method called “ParEGO”, which on every iteration combines all

objectives into a single metric according to randomized weightings. The point with maxi-

mum expected improvement in that metric is found and sampled; then the weightings are

re-randomized, and the process is repeated. Over time, the frontier is expanded uniformly

in all directions of improvement [65]. It should be noted that the single objective metric

is chosen such that even non-convex parts of the frontier will be found. In most of the

test problems explored, ParEGO outperformed NSGA-ii, though for one test function the

reverse was true.

Lastly, Hawe and Sykulski consider a discrete “levels of improvement” metric based on

how many existing points a candidate would dominate [48], though they do not provide

details.

5.2.3.2 Multi-Objective Statistical Improvement for Robust Design

Of the five MOSI implementations presented here, only Keane presents a robust design test

case. The Keane test case uses crossed arrays, with 20 Monte Carlo points sampled at
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every design, and separate Kriging models fitted for aleatory mean and standard deviation.

In an airfoil design test problem, Keane found that the E[I] and P(I) methods performed

slightly better than a surrogate-enhanced NSGA-ii method [60]. Note that there is no reason

such a crossed array method could not be used with any of the multi-objective statistical

improvement methods found in the literature.

Statistical improvement methods in general have shown significant potential on engi-

neering problems, and multi-objective versions have generally shown encouraging results

as well. Note that the baselines for comparison have been NSGA-ii, the multi-objective

evolutionary algorithm. There have been no comparisons with Design of Experiments.

This raises a question, however. The designer would like to know when to use multi-

objective statistical improvement methods for robust design, and when to use design of

experiments. Again, the space of possible engineering problems is too vast to make sweeping

generalizations. It is reasonable, however, to assess the relative performance of the two

methods at a baseline case, and to make predictions about how that relative performance

changes as a function of certain important properties of the test case.

A multi-objective optimizer seeks the Pareto frontier, rather than a single point as a

regular optimizer does. Conceptually, a larger “fraction” of the space can be considered

optimal. In the limit of a Pareto frontier that occupies the entire design space, it is not

likely that any optimizer could outperform a DoE, since a DoE is designed specifically for

global accuracy.

This sort of “Pareto fraction” (it might not be unitless, if the frontier has lower dimension

than the design space) will increase as the number of objectives increases and decrease as

the number of design variables increases. For simplicity, only one of these will be varied,

and the question will be asked:

Research Question 2: For finding mean/risk Pareto frontiers, how does the relative

efficiency of design of experiments and multi-objective statistical improvement change

with the number of design variables?
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Again, “efficiency” will need to be defined later.

Also again, it will be impossible to prove that any one method works better than any

other, even for a small subset of possible problems. However, an experiment can provide

support for a more modest hypothesis. There is good reason to believe that in all but

the simplest small-dimensional and predictable DoE cases, the multi-objective statistical

improvement methods will achieve greater efficiency by selectively sampling near the Pareto

frontier. Looking at the relative efficiency of the two methods, it seems likely that greater

numbers of design variables will reward statistical improvement methods. An intuitive

explanation follows.

Consider that the Pareto frontier has, in a sense, one fewer dimensions than the number

of objectives. A one-objective Pareto frontier is a 0-dimensional point, a 2-objective Pareto

frontier is a curve (a 1-dimensional path through 2-space), and a 3-objective Pareto frontier

is a surface (essentially 2-dimensional). In design space, the frontier will tend to have

that same degree of “dimensionality”. See for example the 2-objective frontier shown in

Figure 16, which is “curve-like” in both objective and design space, though it is broken into

sections. If the number of design variables go up, it will still be a curve. So if the number

of design variables increase but the number of objectives does not, the dimensionality of

the Pareto frontier will diminish relative to the dimensionality of the space. Thanks to the

curse of dimensionality, it will become more “local”. Say one wished to draw a “tube” of

fixed width around the curve in Figure 16. As the number of design dimensions increased,

this “tube” would represent a progressively smaller fraction of the total hypervolume.

All this is to say that Multi-Objective Statistical Improvement methods are more “lo-

calized”, whereas DoE methods are fully “global”, and as the number of number of design

variables increases the region of interest becomes more “local.” This leads to a hypothesis:

Hypothesis 2: As the number of design variables increases, multi-objective statistical

improvement methods will become more efficient relative to a design of experiments.
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Figure 16: A 2-objective Pareto frontier. In objective space (a), the frontier is a 1-D curve
through 2-D space, and will be for any 2-objective problem. In design space (b), it is still
essentially a 1-D curve regardless of how many design dimensions there are, though it may
have multiple discrete sections.

5.3 A Gap in the Literature

In the literature, two promising methods for Type I mean/risk robust design were identified:

• In a design of experiments approach, combined arrays have the potential to improve

computational efficiency relative to crossed arrays

• In an optimization approach, a multi-objective statistical improvement method has

the potential for greater computational efficiency relative to other multi-objective

optimization methods

There is significant literature on both individually, though the literature on Multi-

Objective Statistical Improvement is all quite recent. Both methods rely on global surrogate

models of the system response. However, no paper to date, to this author’s knowledge, has

combined the two. This leads to a direction for research:

Research Objective: Implement multi-objective statistical improvement methods us-

ing surrogate models that are functions of both design and noise variables (combined

arrays).

This will lead to an investigation of possible implementation details, as well as to new

research questions.
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CHAPTER VI

MULTI-OBJECTIVE STATISTICAL IMPROVEMENT WITH

COMBINED ARRAYS

In the previous chapter, a review of the literature found a gap, namely the use of multi-

objective statistical improvement methods for Type I robust design problems where a sur-

rogate model of the response is regressed on both design and noise variables. This led to a

research objective, re-printed here for convenience:

Research Objective: Implement multi-objective statistical improvement methods us-

ing surrogate models that are functions of both design and noise variables (combined

arrays).

Ultimately, the real question of interest to a designer is whether such a method has any

merit. First, however, the method must be implemented.

The method will require quantification of both epistemic and aleatory uncertainty, fol-

lowed by the selection of sampling criteria both in design space and in noise space. Methods

will be drawn from the literature where possible, and several candidate approaches will be

presented at each stage.

Research questions will be raised with respect to the effectiveness and desirability of

the proposed method with respect to established methods, which will lead to a set of

experiments to be discussed in later chapters.

6.1 Second-Order Probability: Epistemic of Aleatory Statistics

If Multi-Objective Expected Improvement methods are to be used, it is necessary to quan-

tify the epistemic uncertainty in the objective metrics. Since the objective metrics here are

measures of aleatory uncertainty (expected performance and some measure of risk), this
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means finding epistemic uncertainty in aleatory measures. This epistemic-of-aleatory un-

certainty is known as second-order probability or SOP [29]. Notation for the various terms

is shown in Table 3.

In expected improvement methods, Bayesian surrogates (typically Gaussian Process

models) are fitted directly to the objective metrics; these surrogates provide Gaussian un-

certainty distributions for the value of the objective at un-sampled points. Keane [60] used

this method for Type I robust design, by running a fixed number of Monte Carlo samples

at candidate designs, finding the aleatory statistics, and fitting separate Gaussian Process

models to mean and standard deviation.

If similar methods are to be attempted with surrogates that model performance in a

combined design/noise space, the aleatory mean and risk must be calculated indirectly

from the combined surrogate. For a particular design of interest, the aleatory input noise

distributions must be propagated through the surrogates to find the aleatory mean and risk.

This chapter is organized as follows. First, a two-dimensional illustrative example is

shown, to clarify the concept of second-order probability in context. In the next two sections,

it will be shown how Monte-Carlo based methods can be used to find SOP terms, both

for linear Bayesian models and for Kriging-type Gaussian Process models. The Gaussian

Process-based method will be shown to have precedence in the literature. Additionally,

analytical methods for calculating SOP terms are found in the literature for a certain

limiting assumptions. Finally, procedures will be proposed for sampling the simulation

code. An outer search on the design variables will be based on existing multi-objective

statistical improvement methods, and an inner search will attempt to efficiently estimate

the statistics of interest.

6.1.1 A Two-Dimensional Illustrative Example

The next sections will illustrate the computation of epistemic uncertainty in aleatory statis-

tics. In order to better explain the procedure, a purely illustrative example problem will

be used, with a single design variable and a single noise variable. Though in practice such

a simple problem could be solved with simpler methods, it will be used in the interest of
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Table 3: Notation for Second Order Probability Terms

pe(µa) Epistemic distribution on aleatory mean
pe(ρa) Epistemic distribution on a generic aleatory risk statistic
µe(µa) Epistemic mean of the aleatory mean
σe(µa) Epistemic standard deviation on the aleatory mean
µe(σa) Epistemic mean on aleatory standard deviation; note that aleatory stan-

dard deviation cannot have a Gaussian distribution.
σe(σa) Epistemic standard deviation on the aleatory standard deviation
Cov[µa, σa] Epistemic covariance between the aleatory mean and standard deviation

visualization.

A plot of the example function can be seen in Figure 17. The performance metric, T ,

is a function of a single design variable, D, and a single noise variable, S. Assume that the

aleatory uncertainty distribution of the noise variable, p(S), is known to the designer. In

the example, the aleatory distribution of the noise variable is known to be Gaussian.

Figure 17: (a) A plot of a 2-dimensional example problem, with a single design variable D
and a single noise variable S (b) The assumed aleatory distribution p(S)

Say there is a particular design of interest, called D∗. If the true function T (D,S) is

known (though it may be expensive to sample), a very good approximation of the true

aleatory output distribution p(T (D∗, S)) can be found by exhaustively sampling from p(S)

and repeatedly evaluating T (D∗, S). This concept is shown in Figure 18.

From this exhaustive Monte-Carlo sampling, the true aleatory statistics of mean and

standard deviation can be found with high accuracy. Note that for this example problem,

standard deviation will be assumed as the measure of risk. These two statistics at the chosen
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Figure 18: (a) A slice of T (D,S) taken at a particular design, D∗. (b) Finding the aleatory
output distribution p(T (D∗, S)) for a known Gaussian noise variable distribution p(S).

design point are denoted µtrue(D
∗) and σtrue(D

∗), respectively.

In practice, the true function T (D,S) might be expensive, and this sort of exhaustive

Monte Carlo sampling would be impractical. In the next two sections, it will be assumed

that a Bayesian surrogate has been fitted to T (D,S), and the statistics µ(D∗) and σ(D∗)

will be estimated, along with a measure of their epistemic uncertainty.

6.1.2 Linear Bayesian Models

This section will describe a method for estimating the epistemic uncertainty, in a Bayesian

sense, on aleatory statistics using a Linear Bayesian Surrogate fit to both design and noise

variables. This method does not explicitly appear in the literature, though it will be shown

in the next section that a nearly identical method can be found for Gaussian Process models.

Linear models are less frequently found in the literature in general, so it is not surprising

that the method does not appear, obvious extension though it is. The case of linear Bayesian

models is presented first because it is conceptually simpler.

Say that a 10-point design of experiments has been selected to choose points in a com-

bined (D,S) space. A linear Bayesian model has been fit to the data, and is shown in

Figure 19. In this example, the basis functions include linear terms as well as Gaussian

radial basis functions centered on each data point.

Recall from the literature review section on Linear Bayesian Models that in a non-

Bayesian linear model, a set of weights w are found that best describe the data, and are
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Figure 19: (a) A 10-point Latin Hypercube DoE in (D,S) space (b) A Bayesian linear
model fit to the data

multiplied by a set of basis functions, evaluated at un-sampled points. From Equation (7):

T̂ (X) = wTφ(X)

In a Bayesian linear model, the epistemic uncertainty is encoded in posterior distri-

butions on the linear weights, Equation (9). This distribution is a multivariate Gaussian.

Some posterior probability distributions p(w|D) given the data D are shown for some of

the weights in the example problem in Figure 20. Note that marginals are shown; all of

the weights are correlated. From now on, the joint posterior of the weights will simply be

written as p(w), and the conditional on the data D will be dropped from the notation. Say

Figure 20: Some of the distributions in p(w|D). Note that these are actually multivariate
Gaussian, marginals are shown.

the designer wishes to know the aleatory statistics at a particular design, D∗. Like in the

previous section, a slice can be taken. Unlike before, where the true function was known,

now there is epistemic uncertainty. A slice along with a 95% epistemic confidence interval,
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derived from the Bayesian model, is shown in Figure 21(a). The confidence interval is found

by evaluating the posterior predictive distribution of the Bayesian model, originally given

in (12).

p(T̂ |X,T,S0, β) = N (T̂ |, µT̂ , σ
2
T̂

(X))

µT̂ (X) = mT
Nφ(X)

σ2
T̂

(X) =
1

β
+ φ(X)TSNφ(X)

Where now X = [DT , ST ]T is a single vector with both design and noise variables. The

prediction will from here on be written as T̂ (D,S), and all conditionals will be dropped.

Figure 21: (a) A slice of the surrogate showing T (D∗, S) at a fixed D∗ (b) Three randomly
generated functions η(i)(D,S) shown over the same slice

If the designer wished to find a best estimate of the aleatory statistics at a design D∗,

they could do so in a manner similar to that used with the true function: with Monte

Carlo sampling on S, and by using the function defined by the mean predictive value of

T̂ (D∗, S). However, the designer in this case does not simply want a best estimate; they

want epistemic uncertainty.

Epistemic uncertainty is encoded in the multivariate w distribution p(w), and this can

be used to the designer’s advantage. Say the designer samples from that multivariate distri-

bution. Every draw i produces a vector of weights w(i); every vector of weights represents

a single random linear model, η(i)(D,S). Three such draws and the slices η(i)(D
∗, S) are

shown in Figure 21(b).

For each draw from p(w), Monte Carlo sampling on the noise variable S can be used
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to find an aleatory distribution on the output. From this, the aleatory statistics µa,(i) and

ρa,(i) may be computed for that random function. When this is repeated over many samples

of w, a histogram may be found for each of the aleatory statistics, and these histograms

are approximations of the epistemic distributions of the aleatory statistics, p(µa) and p(ρa).

Figure 22 shows 100 random draws from p(w) and the corresponding histograms for µ(D∗)

and σ(D∗).

Figure 22: (a) 100 randomly generated functions shown at D∗ (b) Epistemic histograms for
the aleatory statistics µ(D∗) and σ(D∗)

6.1.3 Gaussian Process Models

When the surrogate is a Gaussian Process model rather than a linear model, second-order

statistics can be found using a similar method, with some notable differences. This method

appears in a slightly modified form in Oakley and O’Hagan [87]. The modification, along

with further work by Apley et al. [4] is discussed at the end of the subsection.

As before, Figure 23 shows the same 10-point DoE and a Gaussian Process model fit to

the same data. At the same D∗ as in the previous example, the designer wishes to know

the aleatory statistics, given a known noise variable distribution p(S).

Unlike in a linear Bayesian model, in a Gaussian Process model the epistemic uncertainty

is not represented through function weights. Instead, it is encoded in a correlation structure.

Recall from the literature section on Gaussian Process models, that the covariance between
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Figure 23: (a) A 10-point Latin Hypercube DoE in (D,S) space (b) A Gaussian Process
Kriging model fit to the data

any two un-sampled points i and j can be found as 30:

Cov[T̂ (x(i)), T̂ (x(j))] = σ̂2[k(x(i), x(j))− ψ(x(i))TΨ−1ψ(x(j))

+ {φ(x(i))−GTψ(x(i))}TW{φ(x(j))−GTψ(x(j))}] (36)

This can be easily expressed in matrix form, to find the covariance between a set of

points x:

ΣT̂ [x] = σ̂2[Ψ(X)− ψ(x)TΨ−1ψ(x) + {φ(x)−GTψ(x)}TW{φ(x)−GTψ(x)}] (37)

Like with a linear model, what is needed is a way to sample from function space, that is, to

make random Monte Carlo draws, each of which represents a possible functional form. This

can be easily achieved by choosing a set of points, and sampling from their joint predictive

distribution. Figure 24 shows a joint predictive distribution conceptually, for two points

X(A) and X(B) in a 1-dimensional example problem.

The joint posterior is a multivariate Gaussian distribution:

T̂(x) ∼ N (T̂ |µT̂ ,ΣT̂ ) (38)

This can be used to now sample from function space. Rather than actually creating

a random function, as was done with the linear model, instead the points in X space are

selected first, and their joint posterior predictive distribution is found. Every draw from this

multivariate Gaussian represents a random function, evaluated at those points. In Figure 25,
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Figure 24: A 1-dimensional Gaussian Process Kriging model (a) The posterior predictive
distribution at a single point (b) A joint posterior predictive distribution at two points X(A)

and X(B)

Figure 25: (a) A slice of the Gaussian Process surrogate showing T̂ (D∗, S) at a fixed D∗

(b) Three randomly generated “functions” shown over the same slice, evaluated on a set of
10 evenly-spaced points

this is shown for a slice of the 2-D example problem at D∗, with the joint posterior of ten

evenly-spaced points in S evaluated three times.

To find statistics of statistics, then, the first step is now to skip ahead and generate a

full set of aleatory Monte Carlo cases SMC , by drawing from the aleatory noise variable

distribution p(S), shown in the lower part of Figure 26(a). In the example, 1,000 noise

cases were generated. These Monte Carlo cases are all points in noise space, and it is now

possible to find their epistemic joint posterior predictive distribution, T̂(D∗,SMC).

Now a second set of Monte Carlo cases is created, this time by drawing from that

distribution. Every random draw represents a different function, evaluated at all of the noise
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points. This is shown in Figure 26(a), with 100 random functions drawn from T̂(D∗,SMC).

Figure 26: (a) 100 randomly generated functions shown over the same slice, evaluated on
a set of 1,000 Monte Carlo points drawn from the aleatory noise distribution p(S) (b)
Epistemic histograms for the aleatory statistics µ(D∗) and σ(D∗)

Now the designer possesses the same information as was required in the case of a linear

Bayesian model. For every random function, there is an aleatory distribution p(T̂ (D∗, S)|p(S)).

The aleatory statistics µa and σa can be computed for every random function, resulting in

histograms that approximate the epistemic distributions pe(µa) and pe(σa). The results of

this are shown in Figure 26(b).

6.1.3.1 Non-Gaussian Epistemic Distributions

Recall that the purpose of finding epistemic uncertainty in the aleatory statistics was to en-

able the use of multi-objective statistical improvement methods, where each aleatory statistic

is treated as an objective. Previous use of multi-objective statistical improvement methods,

as found in the literature, relied on the use of two Bayesian models, one each for µa and σa.

In such an implementation, the epistemic uncertainty distributions pe(µa) and pe(σa) will

be Gaussian, because that is the form that the surrogates take.

However, in the previous section, it was shown how to indirectly approximate pe(µa) and

pe(σa), both derived from a single surrogate model. When finding the epistemic distribution
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of an aleatory statistic, there is no longer a structural guarantee that the uncertainty dis-

tributions will be Gaussian. In the case of σa, for example, it cannot be Gaussian, because

standard deviation is always greater than or equal to zero. Whether a given statistic is in

fact Gaussian, or failing that whether it can be approximated as Gaussian, will affect the

usability of off-the-shelf statistical improvement methods.

6.1.3.2 Extensions to the Method

Several extensions to this method can be found in the literature. Oakley and O’Hagan use

a similar method to find statistics in a non-design scenario. They use the same concept for

generating random functions, but they find that with large numbers of aleatory Monte Carlo

points, the samples can become close together and lead to ill-conditioning of the correlation

matrix. They solve this problem by first carefully selecting points from the space (though

they do not describe their criteria). Random draws from their joint posterior are made, each

corresponding to a random “function”, and from this function an arbitrarily large number

of points can be sampled, which will have a joint t-distribution; however, the authors note

that this process is very computationally intensive. Note that Oakley and O’Hagan use a

generalized Gaussian Process model with linear model terms.

Building on the work of Oakley and O’Hagan, Apley et al. extend the method to an

engineering design application, where estimates of aleatory mean and standard deviation

are combined into a single uncertain robustness objective, namely µ+ 3σ. Importantly, the

authors find an analytical expression for pe(µa) and pe(σa) for the specific case of Gaus-

sian distributions on the noise variables p(S). The epistemic distribution on the aleatory

mean pe(µe) is shown to be Gaussian. The epistemic distribution of the aleatory standard

deviation pe(σa) is approximated as a Gaussian (σ is selected because it is closer to a Gaus-

sian than σ2), and µe(σa) and σe(σa) are approximated. Lastly, Cov(µa, σa) is also found

analytically. Note that Apley et al. also use a general Gaussian Process model [4]. The

emphasis of the Apley et al. paper is on the computation of an additional measure:

f(D) = µ(D) + c · σ(D) (39)
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For a normally distributed response, this will be equivalent to a percentile, or a Value-at-

Risk. Here, c is selected for a percentile of interest; for a VaR of 95%, it will be approximately

1.64. For this reason, this metric will be referred to as a pseudo-VaR, and will be used

in place of VaR in test exercises. Apley et al. develop expressions for the second-order

probabilities with respect to this f(D) metric:

µf (D) = µµ(D) + c · µσ(D) (40)

σ2
f (D) = σ2

µ(D) + c2 · σ2
σ(D) + 2c · Cov[µ(D), σ(D)] (41)

Apley et al. further argue that Monte Carlo sampling will be computationally imprac-

tical, the work of Oakley and O’Hagan notwithstanding, and encourage the use of analytic

results instead. However, the authors do not provide the complete integrated results, and

leave a good deal of integration as an exercise to the reader.

In an un-published technical note, O’Hagan presents similar results using clarified no-

tation, and provides complete equations for computing the statistics [88]. O’Hagan does

not provide results for Cov(µa, σa), but this can be easily found by combining O’Hagan’s

expressions with those found in Apley et al.. The complete expressions take several pages to

write out and are provided in Appendix A, along with more details on Apley’s paper. Note

that so far the emphasis of this chapter has been on µa and σa as aleatory statistics of in-

terest. Other statistics, namely VaR and CVaR, might be of interest to the decision-maker.

Oakley [85] presents a method similar to the method presented in Oakley and O’Hagan

[87], that can be used to estimate aleatory percentiles (which are equivalent to VaR). The

method is combined with a method for sampling the noise variables, which will be presented

in a later section.

6.2 Sampling in Design Space: C-MOSI

The previous section showed several methods by which second-order probability (SOP)

could be calculated for any design of interest. If the assumption can be made that both

the mean and risk measure are Gaussian random variables, any of the five multi-objective

statistical improvement methods discussed in the previous chapter can be used. Apley et
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al. made this assumption, and their application was engineering design, but they did not

specifically use a statistical improvement method.

The choice of which MOSI method to use is somewhat arbitrary. The five options are

Emmerich et al. [30], Keane [60], Bautista [15], Knowles [65], or Hawe and Sykulski [48].

The method proposed by Keane is limited to only two dimensions without extensive re-

deriving, so it can not be used if there is more than one stochastic objective; for only two

objectives, it is appealing because it can be evaluated in closed form. Emmerich’s method

can also be found in closed-form for a two-dimensional problem, but it presents compu-

tational difficulties in the presence of more than two dimensions. For larger-dimensional

problems, this leaves the methods proposed by Bautista, Knowles, or Hawe and Sykulski,

any of which might be implemented. Hawe and Sykulski’s paper does not provide algorith-

mic details, so some creativity would be required to implement it. Bautista’s method can

be readily calculated for an arbitrary number of objectives using Monte Carlo methods.

Figure 27: A notional Pareto frontier. Several candidate designs are shown, with epis-
temic uncertainty ellipses drawn around them. The selected design, D∗, seems to have the
maximum expected Pareto improvement (or the highest probability of Pareto improvement)
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According to one of these algorithms, a design point can be selected that maximizes

either the probability of improvement or expected improvement, in terms of aleatory mean

and risk. This process is performed with a global optimizer that searches over the design

variables and performs the SOP calculation at many design points. A notional frontier plot

is shown in Figure 27. The P(I) or E[I] function is usually highly multi-modal, with local

maxima between already-sampled points, where the epistemic uncertainty is high.

Previously, this document has used the term Multi-Objective Statistical Improvement

(MOSI) to refer generally to the five methods found in the literature. When MOSI is used

in a combined design/noise array, it will be called Combined-space MOSI, or C-MOSI.

6.3 Modifying MOSI for Uncertain Pareto Sets

In existing multi-objective statistical improvement methods, it is assumed that already-

sampled points are known with certainty, and the current known Pareto frontier is found

from these points, as in Figure 28(a). However, in a combined-array approach, since designs

are only partially sampled in noise space, there are no designs where the objective values

are known for certain. It is not possible, therefore, to talk about improvement over a

deterministic Pareto frontier. Instead, it is necessary to talk about improvement over a

probabilistic frontier, as in Figure 28(b). Looking at the figure, it would be expected that

ignoring uncertainty in the Pareto set would lead to an under-estimation of uncertainty,

especially in regions where the frontier itself is highly uncertain. This problem was addressed

in the context of a multi-objective genetic algorithm by Kumar [67].

A revised MOSI approach will be discussed only in the context of Emmerich, Deutz,

and Klinkenberg’s hypervolume method [30], though a similar approach could be used to

modify Keane’s normalized method [60].

Emmerich, Deutz, and Klinkenberg [30] propose a hypervolume-based approach to multi-

objective statistical improvement, as has already been mentioned in the literature review.

It divides the objective space into discrete hypervolumes, as shown in Figure 30, a repro-

duction of a figure found in the original paper and included for clarity. For a 2-objective

problem, with independent Gaussian uncertainty on the objectives at un-sampled points,
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Figure 28: Multi-Objective Statistical Improvement environment, deterministic vs. prob-
abilistic Pareto set. Blue ellipses represent uncertainty in mean/risk objective space of
candidate designs. In (a), red points are deterministically known samples that form the
currently understood Pareto frontier, and red lines delineate the augmenting vs. dominated
regions. In (b), the current Pareto set is known only probabilistically, as in a combined-
array method. The transparent red bars represent confidence regions for the Pareto frontier
boundaries.

the computations can be made analytic and quite tractable. The authors even provide

MATLAB code on their website [31].

Note that in a combined-space approach, two assumptions of the analytic approach are

violated. The objectives at un-sampled points are not independent, nor are they neces-

sarily Gaussian. However, it will be assumed for tractability that the objectives are both

independent and Gaussian.

Since there are no already-sampled points which are known with certainty, the entire

design space can theoretically be considered as part of the probabilistic frontier. If the epis-

temic uncertainty distributions have infinite tails, any arbitrary point has some probability

of being on the frontier. If any un-sampled point is to improve over the Pareto frontier,

and the Pareto frontier theoretically extends over the entire design space, then the problem

becomes one of integration over the entire design space.

However, instead of treating the entire space as a frontier, a subset of points will be

considered as candidates for the Pareto set. This subset could be chosen randomly from

throughout the design space. Instead, it will consist of all existing design samples, since

80



www.manaraa.com

already sampled designs will be expected to have lower uncertainty than randomly sampled

designs. From this set of designs, a Pareto set will be selected based on the expected values

of their objectives. An important assumption will be made here. Though the values of the

current Pareto set will be considered uncertain, the membership and ordering will remain

fixed. Thus, several important assumptions and simplifications have been made so far:

• Assumption: The epistemic uncertainty in the design objectives is both inde-

pendent between designs and Gaussian.

• Simplification: The Pareto set will be chosen from the current set of (albeit

incompletely) sampled designs.

• Assumption: Even though the objective values of the Pareto set are uncertain,

the membership and order in the set will be assumed to remain fixed. Membership

in the Pareto set will be determined by the expected values of the mean/risk

objectives.
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Figure 29: 1-dimensional statistical improvement of design D over a Pareto point P . In
(a), P is known deterministically, and the improvement is found from the positive tail of
YP − p(YD). In (b), P is uncertain, and so its Expected Improvement or Probability of
Improvement is found from the new distribution p(YP − YD), which is shown by itself in
(c).

Under these assumptions, it is possible to consider a modified version of Emmerich,

Deutz, and Klinkenberg’s MOSI method that applies to an uncertain Pareto set. Consider

first the improvement over a fixed, totally certain baseline, as depicted in Figure 29(a), and
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as assumed in the paper. With Gaussian uncertainty on un-sampled designs, the difference

in objective space between a design D and a particular Pareto point P is Gaussian:

YP − YD ∼ N (YP − E[YD],Var[YD]) (42)

Now consider the improvement in one objective over an uncertain baseline, as shown in

Figure 29(b). If the values YD and YP of the un-sampled point (D) and the baseline (P )

are considered to be jointly a bivariate Gaussian, their difference is also Gaussian:

YP − YD ∼ N (E[YP ]− E[YD],Var[YP ] + Var[YD]− 2Cov[YP , YD]) (43)

If the parameters E[YD], E[YP ], Var[YD], Var[YP ], and Cov[YD, YP ] are all known, then

the Expected Improvement can be easily found analytically. Monte Carlo methods can be

used to find these parameters, though if Monte Carlo methods are used then the Expected

Improvement can be found more directly.

Note, however, that the term Cov[YD, YP ] represents the covariance in a single objective

between the candidate design and an uncertain Pareto point. If analytical methods are used

to find SOP terms, this term will not be available. Is this actually a problem? For designs

that are close together in design space, covariance in the objective will be positive. So if

the term is ignored, the variance of the improvement metric will tend to be over-estimated

for designs close to already sampled Pareto points. This will lead to an over-estimation of

the Expected Improvement and “over-sampling” in these areas.

Consider, however, that as a sampling criteria, Expected Improvement is not necessarily

optimal, especially for a combined-array approach. Ideally, in addition to finding superior

designs, a sampling algorithm should also improve the estimate of the current frontier.

From a purely heuristic standpoint, ignoring the covariance term will lead to increased

sampling near designs already thought to be on the frontier. Therefore, though somewhat

unsatisfying from a theoretical standpoint, it is not certain that ignoring the Cov[YD, YP ]

term will result in degraded algorithmic performance, and there is a possible reason why it

might improve performance. Due to the computational expense of testing this, the question

will be left unresolved, and the covariance term will be dropped for tractability.
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Assumption: Cov[YD, YP ] = 0 (the covariance in objective values between any two

designs is zero)

With the assumption of independence between designs, Emmerich, Deutz, and Klinken-

berg’s analytical MOSI method can be easily revised through selective modification of vari-

ances. The new assumed form for the difference in an objective between two designs be-

comes:

YP − YD ∼ N (E[YP ]− E[YD],Var[YP ] + Var[YD]) (44)

6.3.1 Emmerich’s Hypervolume E[I] Method Summary

What follows is a brief description of Emmerich et al.’s equations. The description largely

follows that paper’s flow verbatim, with very minor changes to notation. Two figures

from the paper are also reprinted verbatim in Figure 30 and Figure 31. Readers who are

interested in a derivation may consult the very useful original paper, [30]. After the method

is described, the next section will detail the changes required to adapt to uncertain Pareto

sets.

It is assumed that there are K designs in the Pareto set:

P = {~y(1), . . . , ~y(K)} (45)

Each point is in M -dimensional objective space, RM , and has coordinates:

~y(k) = {b(k)
1 , . . . , b(k)

m , . . . , b
(k)
M } (46)

Where m will be used to index over the dimensions of the objective space. Now, looking at

a single objective m, all the Pareto points can be sorted by their mth coordinate, denoted

bm. The sorted list is written as b
(1)
m , b

(2)
m , . . . , b

(j)
m , . . . , b

(K)
m , where j is used to index over the

ordered list. Note that this index does not always refer to the same design, since the ordering

will be different for every objective. For technical reasons, the authors define b
(0)
m = −∞,

b
(K+1)
m = yrefm , and b

(K+2)
m = ∞. These sets of sorted coordinates lead to a partitioning of

the objective space into grid cells. A set of grid coordinates is denoted (i1, . . . , im, . . . , iM ),
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Figure 30: Reproduction of Figure 2 from Emmerich et al.. “Schematic drawing of a pop-
ulation, its hypervolume, and grid in the bi-objective case. The black points are the points
of the population, except the point in the upper right corner that marks the position of the
reference point for the hypervolume. The yellow region defines the measured hypervolume

S. The grid coordinates are indicated by b
(i)
1 and b

(i)
2 for the first and second coordinate,

respectively. Grid-cell C(1, 1) is highlighted by a thick black boundary.”[30]
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Figure 31: Reproduction of Figure 3 from Emmerich et al.. “Schematic drawing of the
integration area and grid in the bi-objective case.”[30]. The figure is reproduced here
primarily as an explanation of the vector ~v and the region S−.
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where each im ∈ {0, . . . ,K + 1}. A grid cell is denoted C(i1, . . . , iM ), and is determined by

a lower grid node and an upper grid node, as a half-open (from below) interval box. These

two nodes are defined as the upper and lower bounds of C:

~l(i1, . . . , im, . . . , iM ) = (b
(i1)
1 , . . . , b(im)

m , . . . , b
(iM )
M ) (47)

~u(i1, . . . , im, . . . , iM ) = (b
(i1+1)
1 , . . . , b(im+1)

m , . . . , b
(iM+1)
M ) (48)

The space bounded by these two nodes will be described with the notation (~l, ~u]. Many of

these cells lie behind the Pareto frontier, and are called inactive cells. Those that dominate

the Pareto set are called active cells, denoted C+. The expected improvement of a design

D with objective vector ~y over the Pareto set P is the sum of the integrals over each active

cell,

E[I](D) =
∑

C(i1,...,iM )∈C+

δ(i1, . . . , iM ) (49)

δ(i1, . . . , iM ) =

∫
~y∈(~l,~u]

I(~y, P ) · PDF(~y)d~y (50)

Emmerich et al. provide the following expression for the computation of the integral over

an active grid cell:

δ(i1, . . . , iM ) =

 M∏
j=1

δj(i1, . . . , iM )

−Vol(S−)
M∏
i=1

(
Φ

(
ui − µi
σi

)
− Φ

(
li − µi
σi

))
(51)

δj(i1, . . . , iM ) =Ψ(vj(i1, . . . , iM ), uj(i1, . . . , iM ), µj , σj)

−Ψ(vj(i1, . . . , iM ), lj(i1, . . . , iM ), µj , σj) (52)

Where the vector ~vj(i1, . . . , iM ) ∈ RM is defined as shown in Figure 31. The terms Ψ are

the integrations of the marginal normal distribution:

Ψ(a, b, µ, σ) = σ · φ
(
b− µ
σ

)
+ (a− µ)Φ

(
b− µ
σ

)
(53)

And φ and Φ are simply the PDF and CDF of the standard normal distribution. Finally,

Vol(S−) is a correction term for a certain hypervolume defined by a subset of P and ~v, as

shown in Figure 31.
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6.3.2 Changes to Emmerich’s Hypervolume E[I] Method to Deal with Uncer-
tain Pareto Sets

The procedure can be easily modified to deal with an uncertain Pareto set. As previously

stated, it is assumed that the membership and ordering of the set does not change, and

covariance between designs is ignored. The only modification required, then, is to adjust

the variance of the objectives to account for the uncertainty of the Pareto points. Any

time a standard deviation in a dimension, σj , appears, it is simply replaced by a corrected

standard deviation, which will include the uncertainty contributed by a particular Pareto

point. The previous equation for δ(i1, . . . , iM ) becomes:

δ(i1, . . . , iM ) =

 M∏
j=1

δj(i1, . . . , iM )

 (54)

−Vol(S−)

M∏
i=1

(
Φ

(
ui − µi

σ̃uj (i1, . . . , iM )

)
− Φ

(
li − µi

σ̃lj(i1, . . . , iM )

))

δj(i1, . . . , iM ) =Ψ(vj(i1, . . . , iM ), uj(i1, . . . , iM ), µj , σ̃
u
j (i1, . . . , iM ))

−Ψ(vj(i1, . . . , iM ), lj(i1, . . . , iM ), µj , σ̃
l
j) (55)

Where each σ̃j is influenced by the variance in the j-dimension of one particular Pareto

point:

σ̃lj(i1, . . . , iM ) =

√
σ2
j + Var[y

(ij)
j ] (56)

σ̃uj (i1, . . . , iM ) =

√
σ2
j + Var[y

(ij+1)
j ] (57)

Where σ2
j is the variance in objective j due to the uncertainty of the candidate design, and

Var[y
(ij)
j ] is due to the Pareto point that marks the lower bound of box C in dimension j.

Similarly, Var[y
(ij+1)
j ] is from the Pareto point that marks the upper bound of box C in

dimension j. The mixing of σ2 and Var[] notation is regrettable.

Computationally, this is a minor extension of Emmerich et al.’s method, and adds only a

small amount of expense. The effect on a small example problem can be seen in Figure 32.

The figure depicts a small Pareto set of 5 designs. In (a), the contours show the multi-

objective E[I] using Emmerich’s method, for a candidate point with a fixed variance of 0.01

in both objectives, as a function of that point’s expected value. In (b), the middle Pareto
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point has been made uncertain, also with a variance of 0.01, and the surface shows the

increase in E[I] due to this change, when the modified method is used. Candidate points

which lie near this uncertain Pareto point will experience an increase in E[I]. What’s more,

a local boost in E[I] extends outward from the uncertain point, along its gridlines.

Figure 32: The effects of Pareto set uncertainty on MOSI. Both objectives are to be mini-
mized. In (a), five deterministic Pareto points are shown, and the hypervolume-based E[I]
of a candidate design centered on the corresponding point on the graph is shown, when
the design has a variance 0.01 in each objective. There is some expected improvement just
behind the frontier, and it eventually begins to increase linearly as the expected objective
value becomes very dominant. In (b), the middle Pareto point has been given a variance
of 0.01 in each objective, and the increase in E[I] is shown relative to (a). There is a local
boost in E[I] near the uncertain Pareto point.

6.4 Sampling in Noise Space

After a design has been chosen which maximizes P(I) or E[I], a new decision must be made

before the expensive simulation code can be sampled: where the next sample point should

be placed in noise space. Whereas the design point was chosen to balance exploration of

un-sampled regions with exploitation of areas known to be attractive, the noise variable

settings can be chosen based purely on an exploration metric.

A naive sampling criteria would be to simply sample where the epistemic posterior

variance of the response model is highest, as shown in Figure 33. Eventually, this will reduce

the uncertainty to zero. However, this is probably not the most efficient method. Depending
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on the aleatory distribution of the noise variable, there are probably areas that are more

important than others. For example, if the noise variable has a Gaussian distribution

centered on the noise range with a tight distribution, points at the edges of the noise space

will be highly unlikely, and so the model accuracy at the edges won’t strongly affect how

well the aleatory mean and variance are estimated. It could also be imagined that a designer

is interested in some tail-centric risk measure, like value-at-risk, in which case the accuracy

at the tail of interest would disproportionately affect the accuracy of the risk metric.

Figure 33: A simple noise sampling scheme, point of highest uncertainty

6.4.1 Oakley and O’Hagan’s General Sampling Method

The problem of choosing samples in order to estimate the distribution of an output is well-

studied in statistics. The specific case found here, where the response is already estimated

by a Bayesian surrogate, can be found in several papers by by Oakley for Gaussian Process

surrogates. For a general case, where the objective is to obtain more information about the

output probability distribution, Oakley and O’Hagan employ a “simple greedy algorithm”

similar to the “naive” algorithm suggested above, and shown in Figure 34. The set of Monte

Carlo points (from the SOP-finding step) are used as candidate points; over this set, the

point of maximum posterior variance is selected. If additional points are to be selected, the

first point is added to the data set and the procedure is repeated [87]. For an aleatory noise

distribution that spans the input space and an infinite number of Monte Carlo samples, this

is the same as the naive strategy suggested above; but if the Monte Carlo set is smaller, the
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strategy will favor points with higher aleatory density.

Figure 34: Oakley and O’Hagan’s general method. From the already-existing Monte Carlo
sample (from calculating SOP), select the point of highest variance.

6.4.2 Oakley’s Method for Percentiles

In a later paper, also for Gaussian Process model surrogates, Oakley deals with the case

where the objective is to estimate a percentile (which is the same as value-at-risk) [85]. The

method is shown graphically in Figure 35. His objective is to identify a region R in which

to concentrate the next set of samples. First, he generates a random function η(i)(·), just

as was done during SOP quantification. He generates a series of J Monte Carlo samples

{s∗1, s∗2, ..., s∗J} by sampling from the aleatory noise distribution p(S), and using the random

function he creates a set of outputs. From this output set, he find the single point ν(i)

that is the best estimate of the percentile of interest. He repeats the procedure K times

to create a set of “random” percentile values, ν = {ν(1), ν(2), ..., ν(K)}. These percentile

values are all candidate locations of the true percentile in S space, and should be clustered

in a suitable region R where the true percentile is likely to be found. However, that does

not mean that the points ν(i) themselves are good sample locations, because there may

already be a real sampled data point nearby. The task then is to find good sample locations

that collectively reduce the uncertainty in the region R. To accomplish this, Oakley uses

a maximum entropy Latin Hypercube approach. He first finds a weighting function w(S)
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that approximates the density of ν over R. Details are not given on how, but the possible

multi-region nature of the problem is discussed, as is illustrated in Figure 35. From this

weighting function, a Latin Hypercube sample is generated, equal in size to the number of

desired samples. This Latin Hypercube design will cover the space R with a density that

approximates the density of ν, but if it has points close to existing samples it will not reduce

uncertainty much. A way of quantifying the degree to which it reduces uncertainty is to

find the entropy, which will be denoted S. For a set of data Q with a covariance matrix

ΨQ, entropy is proportional to the determinant:

S ∝ |ΨQ| (58)

The covariance matrix ΨQ comes from the joint posterior of the Gaussian Process model.

A large number of random Latin Hypercube designs are created and tested, and the design

with the largest entropy is chosen as the next set of sample points. The method assumes

multiple samples are taken in each step. If a single sample point is desired the method would

need to be modified slightly because a Latin Hypercube sample could not be generated. A

simple method would be to pick a probability contour from w(S) and choose the point

within that contour of maximum uncertainty.

Figure 35: Oakley’s method for sampling to improve percentile estimates [85]. (a) Generate
random functions η(i) (b) Densely sample from p(S) (c) Estimate the percentile ν(i) for each
random function (d) Define the new sampling region R, which may be discontinuous.
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The Oakley method for percentiles should work well, but it will only reduce the uncer-

tainty of the percentile estimate. It will not improve the estimate of the mean or variance

very well, because the samples will all be clustered around one percentile. This leads to a

general sampling strategy, outlined next.

6.4.3 A General Noise Sampling Strategy

For the sake of discussion, assume for a moment that there are exactly two global objectives,

to reduce the mean µa and to reduce risk ρa. These objectives are the basis on which the

current design point D∗ was chosen. For the problem of sampling in noise space, then, it is

assumed that there are two sub-objectives: reduce the epistemic uncertainty in each of the

aleatory statistics.

A multi-objective problem framework could be adopted, to work towards both sub-

objectives simultaneously. However, unlike in the case of the global objectives, there is not

a need to ultimately select a single point. Multiple points can be selected sequentially, so

there is no need to trade between the two objectives. A sensible strategy, then, is to adopt

two independent sampling methods, one for each objective.

So the problem can be stated as two sequential optimization challenges:

arg min
S∗

Vare(µa|S∗) (59)

arg min
S∗

Vare(ρa|S∗) (60)

As before, µa and ρa represent the aleatory mean and risk statistics, and Vare represents

the epistemic variance. S∗ is a candidate sample in noise space.

Under this strategy, an ideal sampling method can be found independently for each of

the statistics of interest. For value-at-risk, for example, Oakley’s method above [85] can be

used. For mean and variance, a different method is required.

6.4.3.1 Proposed Noise Sampling Method: I-SOP

In a later paper, Oakley uses techniques similar to his previous papers to find the Expected

Value of Sample Information (EVSI) [86]. However, the application and form of the problem

is different from this application. Inspired by that work and by Oakley and O’Hagan [87], a
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method is proposed for selecting noise samples in order to improve estimates of the aleatory

response statistics. It largely mirrors the procedure used to select the design sample point

D∗, and it involves a similar level of computational effort. The approach is to sample at

points that reduce best-guess epistemic uncertainty in the aleatory statistics. It relies on

imputation of the candidate data point to estimate the SOP terms; for that reason, and to

have a convenient name for it, it will be called I-SOP.

Recall that the problem has been decomposed into sub-objectives. Assume for a moment

that the current sub-objective is to improve the estimate of the aleatory mean.

D∗ has been fixed, and the task is to select a sample point (or points) in S space. The

next points will be selected one at a time, through an optimization strategy. Starting by

improving the estimate of the aleatory mean, a sensible objective would be:

arg min
S∗

E[ Vare(µa|S∗)] (61)

Note that here the objective is the expected value of the objective from (59), given a new

sample S∗. The expression E[ Vare(µa|S∗)] is the expected epistemic uncertainty in the

aleatory mean estimate given that S∗ will be sampled. This is an expectation on a second-

order probability; it could be called a third-order probability. It would be possible to again

estimate it numerically, by doing a three-level nested Monte Carlo, but this is really not

necessary. Instead, the strategy employed will be to impute an imaginary data point at

S∗: the response at that point is assumed equal to the epistemic mean prediction given by

the response surrogate. The surrogate is partially updated; the tuning parameters are not

re-optimized, but S∗ is added to the data set and the covariance matrix is re-computed.

With the data point imputed, the surrogate will be referred to as t̂(D∗, S|S∗).

The posterior prediction of t̂(D∗, S|S∗) can be used to generate random functions, and

these can be used to find SOP terms just as before. Now the epistemic statistic of interest

is simply the variance in the aleatory mean, which has been calculated assuming that S∗ is

set to its predicted mean value. So the optimization problem has been changed to:

arg min
S∗

Vare(µa|T̂ (S∗) = µT̂ (S∗)) (62)
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Where here the outer expectation has been removed, and it it is assumed that T̂ (S∗) is set

to its mean predictive value from the Bayesian surrogate, µT̂ (S∗). This is the most likely

value of the function, and S∗ is said to be imputed. This simplified formulation is not

equivalent to the real expectation equation shown in (61), but it is used as a best guess, a

common practice in statistics.

Figure 36: I-SOP method for finding “most likely” epistemic uncertainty, given a candidate
sample S∗. (a) Bayesian surrogate, given the data (b) Candidate point S∗ is imputed (c)
Generate random functions (d) Sample aleatory noise p(S) (e) Calculate aleatory statistics
for each random function, and find the epistemic variance in the aleatory statistic

Note that once the point S∗ has been imputed, since the procedure is the same as for

finding SOP terms, if an analytic formulation could be used for the SOP terms, it can be

used here.

Using a single-objective optimization scheme, such as a genetic algorithm, the point in

noise space that results in the lowest epistemic variance on the aleatory mean is selected.

This is called S∗µ.

The exact same procedure can be used to find the point S∗ρ that minimizes the epistemic

variance in the aleatory risk statistic. The selected S∗µ is kept imputed (or sampled before
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the next step), and the objective now is:

arg min
S∗

Vare(ρa|T̂ (S∗µ) = µT̂ (S∗µ), T̂ (S∗) = µT̂ (S∗)) (63)

If the risk statistic is a percentile, this method could still be used, or alternately the method

proposed by Oakley can be used [85]. The selected point is called S∗ρ .

Note that the procedure described assumes that a Bayesian surrogate is fitted to both

design and noise variables. However, there is no reason it cannot be used with a surrogate

fitted only to noise variables. Indeed, the papers by Oakley that inspired the method do

just that. Therefore, though it is presented here in the context of a combined space method,

it can also be used for crossed array noise sampling. The only extra step required is to run

an initial sparse DoE on only noise variables, to train the noise surrogate.

6.5 Pseudocode for Proposed Method

The entire method as proposed, from start to finish, is given here as pseudocode. Through

most of this chapter, concepts have been presented in the context of a single stochastic

objective T , but the method is easily extensible to a vector of J objectives {Tj}, and the

notation below reflects that. The flowchart in Figure 37 presents the same process assuming

only a single stochastic objective.

Combined DoE on 
simulation code

Fit Bayesian 
Surrogate, 
T(D,S)

Optimize: 
Maximize 
MOSI w.r.t. D

SOP Analysis 
at D

Find MOSI for 
uncertain
frontier

Optimize: 
Minimize 
imputed Var(μ)
w.r.t S

SOP Analysis at 
D*

Optimize: 
Minimize 
imputed Var(ρ) 
w.r.t. S

SOP Analysis at 
D*

Sample 
simulation code at 
(D*, S*μ ) and 
(D*, S*ρ )

Impute sample 
(D*, S)

Impute sample 
(D*, S)

D* S*μ
S*ρ

Figure 37: Flowchart of C-MOSI method. This assumes a single stochastic objective T̂ .

• Construct a sparse DoE using a space-filling design in combined design and noise

space (D,S), and evaluate the expensive code at all points.
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• Fit a Bayesian surrogate T̂j(D,S) to all J stochastic responses of interest j.

• Loop:

– Optimize: arg max
D∗

MOSI

∗ SOP analysis: for each objective j find epistemic distributions pe(·) for

aleatory mean µa and risk ρa measures

∗ Feed all SOP moments {E[µe], Var(µe), E[ρe], Var(ρe)}j into a MOSI algo-

rithm

– Optimize: At D∗, find 2J points that reduce epistemic uncertainty

∗ S∗µ,j minimizes imputed epistemic uncertainty in the aleatory mean

S∗µ,j = arg min
S∗

Vare(µa|T̂ (S∗) = µT̂ (S∗))

∗ S∗ρ,j minimizes imputed epistemic uncertainty in the aleatory risk

S∗ρ,j = arg min
S∗

Vare(ρa|T̂ (S∗µ) = µT̂ (S∗µ), T̂ (S∗) = µT̂ (S∗))

– Sample the expensive code at all 2J new data points (D∗, S∗µ,j), (D∗, S∗ρ,j)

– Update all J surrogates T̂j(D,S)

– If the sample budget has been exceeded, or the epistemic uncertainty of the

Pareto set has stopped improving, stop

• Armed with inexpensive surrogates T̂j(D,S), use a normal multi-objective optimizer

to find the best estimate of the multi-objective mean/risk Pareto frontier.

Now that a method has been proposed, it can be compared to other methods. To a

designer interested in using such a method, one of the principal questions is whether the

method will be able to find the Pareto frontier with greater efficiency than other methods.

As with any set of methods, the answer will be highly dependent on the problem and the

implementation specifics. However, the first question is whether it is ever better:
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Research Question 3: Is there a design scenario where a combined array Multi-

Objective Statistical Improvement method out-performs both crossed-array and design

of experiments methods in terms of efficiency?

Again, as with research questions 1 and 2, efficiency will need to be defined.

6.6 A Note on SOP Computational Cost

The analytic SOP calculations provided by O’Hagan [88] and proposed for use in both the

C-MOSI and I-SOP steps are more computationally efficient than running nested Monte

Carlo. However, that is not to say that they are inexpensive. In O’Hagan’s expressions,

there is one particular term, buried in the expression for the Variance of the Variance, that

dominates the computational expense of the SOP calculations. It is the term A−1Rtt, found

in the term which O’Hagan calls I3. A−1, the inverse of the GP covariance matrix, is of size

n× n (where n is the number of samples). Rtt is also of size n× n, so the whole operation

takes a number of floating point operations (FLOPs) given by:

FLOPs = n · n(2 · n− 1) ≈ O(n3) (64)

This is on the same order as taking the inverse of A. The SOP step itself is buried in

three separate optimization loops: the C-MOSI step to select D∗ and the two I-SOP steps

to select S∗µ and S∗ρ . In each of these three optimization loops, the SOP terms must be

calculated many times. Therefore, for every iteration where a new design or noise point

must be selected through optimization, the operation scales as:

FLOPs ∝ Nopt ·O(n3) (65)

where Nopt is just the number of optimization function calls to the SOP analysis. The

number of function calls required to optimize D∗ will itself depend on the dimensionality of

the design space, and the number to select the S∗ points will depend on the dimensionality

of the noise space. As the number of samples reaches the order of hundreds, this one term

comes to completely dominate the calculation time. In testing, by the time the sample size
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reaches about a thousand, selecting a single pair of samples took on the order of an hour

on an Intel i7 Sandy Bridge.
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CHAPTER VII

ELECTRIC POWER GENERATION TEST PROBLEM

Since this work is motivated by an electric power portfolio selection problem, an electric

power simulation tool will be needed for testing. The tool will be used in two ways. It

will be used to demonstrate that the method can be used to solve a problem similar to

the motivating problem. Before that, however, it will be used to characterize the design

space. In the next chapter, a generic and scalable test problem will be developed whose

characteristics are similar to that of the simulation test problem.

7.1 Power Portfolio Components

The test problem need not be capable of simulating every possible electric power generation

scenario. However, it should be capable of modeling a subset of scenarios such that the most

important problem characteristics are captured. Characteristics of electric power generating

portfolios may include:

• Demand for electric power exhibits regular daily and annual fluctuations that are

partially predictable, and short-term fluctuations that are of lower magnitude and

also lower predictability.

• Baseload plants have high capital costs but low operating costs, and usually cannot

be throttled up and down very quickly. They are therefore mostly run at fixed or slowly

varying power outputs. Coal and nuclear are the most common baseload plants.

• Peaking plants have low capital costs but higher operating costs, and are designed

to be throttled up and down quickly to meet demand fluctuations. These are most

commonly natural gas plants. Some amount of spinning reserve must be kept online

to deal with demand fluctuations, that is, more plants must be kept running than are

currently needed, so they can throttle up to meet spikes in demand. This reduces

efficiency.
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• Most baseload and peaking plants are powered by fossil fuels such as coal and natural

gas, which are subject to price uncertainty and potentially carbon costs.

• Peaking plants and most baseload plants are also dispatchable, in that they can be

turned on and off at will (though perhaps not instantaneously).

• Renewable energy sources such as wind and solar power are not dispatchable, that

is their power outputs cannot be adjusted to meet varying demand. They are subject

to fluctuations that may be partially (though never fully) predicted. Their power is

random, and different sources will not be very correlated, so diversification reduces

uncertainty. Non-dispatchable supply uncertainty increases required fossil spinning

reserve.

• Energy storage systems such as pumped hydroelectric storage and flow batteries

are net consumers of energy, but can quickly absorb and release energy to smooth out

fluctuations in demand and non-dispatchable energy supply. They are not common,

as they are usually quite expensive, but their importance may increase in the future

as renewable energy penetrations increase (and potentially as their costs come down).

Storage reduces the need for peaking plants.

• Demand-side management allows an electric utility to have some degree of control

over demand, for example by adjusting consumers’ thermostats at times of peak load.

• Utilities may also subsidize or otherwise encourage efficiency measures, to reduce

the load demand. This would present itself as a change in the magnitude or statis-

tical properties of the demand, and would be subject to uncertainty in the degree of

adoption and effectiveness.

• Market purchases may be made from other utilities to make up for power shortfalls,

at prices that depend on time of day and day of week. They are negotiated much like

financial options, with an up-front price for the option and an agreed-upon “strike”

price at the time the power is needed [90].
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Table 4: Power Portfolio Options from Selected Utilities’ Integrated Resource Plans
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Ameren Missouri 3 3 3 3 3 3 3 3 2011 [2]

Puget Sound Energy 3 3 3 3 3 3 3 2011 [95]

Xcel Energy 3 3 3 3 3 3 3 3 3 2010 [116]

Northwestern 3 3 3 3 3 2009 [84]

PacifiCorp 3 3 3 3 3 3 3 3 3 2011 [90]

Entergy Louisiana 3 3 3 3 3 3 3 3 2010 [35]

Avista 3 3 3 3 3 3 3 3 3 3 2009 [8]

Progress Energy Carolinas 3 3 3 3 3 3 3 3 3 3 2009 [93]

Idaho Power 3 3 3 3 3 3 3 3 2011 [53]

Florida Power and Light 3 3 3 3 3 2010 [37]

Table 4 shows the portfolio options investigated in several utilities’ Integrated Resource

Plans. The amount of detail in the plans was far greater than is obvious from the table.

For example, PacifiCorp considered a wide array of solar power options, including rooftop

PV, hot water installations, and combined solar thermal/natural gas systems [90]. Natural

gas options almost always included both combined-cycle combustion turbines (CCCT’s)

and simple cycle combustion turbines (SCCT’s). Carbon Capture and Sequestration was

considered often, both for natural gas and coal plants. The “other” category included such

diverse options as geothermal power, distributed generation [53], wave energy [90], and fuel

cells [93][90], though in many cases some of the portfolio options were modeled to a far

smaller degree than others. Indeed, not all of these IRPs even used simulation.

7.2 Test Case Characteristics

There exist commercial electric power simulation codes, such as GenTrader [92] and Ventyx

System Optimizer [111]. Ultimately, if the methods being developed here are actually to

be useful in a utility planning context, they will have to be demonstrated on such codes.

However, a lower-fidelity custom simulation was produced instead. The simulation ran

relatively quickly, so it could be tested extensively; the execution time depended on the

size of the portfolio being considered, but at the sizes considered for the test cases it ran

100



www.manaraa.com

in a few seconds per simulation on an Intel i7 Sandy Bridge. Additionally, it was coded

in MATLAB, which allowed easier integration with the C-MOSI test code. This is seen

as a first test, a proof of concept to demonstrate that the method can work on a related

problem; future testing on real portfolio simulation codes will be needed in the next round

of testing.

The test simulation had the following features:

• Demand can be generated with deterministic daily and annual fluctuations plus

short-term fluctuations.

• Natural gas plants are dispatchable, but subject to fuel price uncertainty

• Wind farms are not dispatchable, and individual turbines are partially (though not

perfectly) correlated in their power output

• Solar PV arrays provide peak power in the middle of the day, somewhat before

daily peak demand. Individual PV arrays are more correlated than wind turbines,

but still not perfectly correlated.

• Generic energy storage can smooth out short-term uncertainty in both supply and

demand

• Market purchases can be used to make up for any shortfall, but at higher cost than

self-generating

• Demand Side Management programs can be implemented to reduce peak loads

(through load management) and overall energy consumption (through efficiency mea-

sures), with some increase in baseload (due to displaced usage).

This subset is not complete. Most notably, coal plants were not modeled, because at the

level of fidelity where the system was modeled, they were indistinguishable from natural

gas plants on a technical level. There is also no consideration of nuclear plants, biomass,

or hydroelectric power. Those options which are modeled are represented at a quite low

level of fidelity. The model is probably insufficient for an actual utility portfolio planning
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exercise, but it is hoped that the test case is similar enough in functional “shape” that

methods which work to solve the test problem can be realistically applied to a real power

portfolio problem. The model components are described in detail in the next section, along

with relevant noise sensitivity variables, and the last section characterizes the “shape” of

the space.

7.3 Model Description

The model is implemented in MATLAB. It discretizes a one-year period into 8760 hours.

For each hour, it attempts to satisfy load demand with non-dispatchable distributed wind

and solar inputs, energy storage, and dispatchable fossil supply. Any left-over unsatisfied

demand is met with market purchases. The geographical extent is not explicit, and physical

power flows are not modeled explicitly, nor is there any consideration to reactive power or

power quality.

The tool uses randomly generated input time series data, but does not use multiple

stochastic Monte Carlo runs for every portfolio. Instead, a set of Gaussian white noise time

series are generated during an initialization step, and these are used for all candidate port-

folios, properly transformed to have whatever statistical properties are necessary. Thus,

though sensitivity assumptions may be changed, and thus the statistical properties of the

input time series may change from run to run, this occurs in a smooth and continuous

manner, and it is still possible to make fair comparisons between portfolios and assump-

tions. This approach is the same as that used by NREL’s HOMER micro-power simulation

tool. Indeed the underlying algorithms for generating wind speed and insolation time series

were drawn from that simulation tool’s very helpful documentation [70], and their original

provenance is also noted below as appropriate.

7.3.1 Load Demand

Load demand is generated as a combination of a fixed baseload, a deterministic annual cosine

wave, a deterministic daily cosine wave, and autocorrelated Gaussian noise. The Gaussian

noise is generated with a very simple autoregressive model. First, uncorrelated standard
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Gaussian white noise is generated, βdemand(1, . . . , i, . . . , 8760). Then, given a supplied lag-

1 autocorrelation value αdemand and variance σ2
demand, the autocorrelated noise β̂demand is

simply generated with:

β̂demand(i) = σdemand

(
αdemand · β̂demand(i− 1) + βdemand(i)

√
1− α2

demand

)
(66)

This noise is added to the mean load, along with daily and annual periodic fluctuations

of amplitudes Pdaily and Pannual, to generate the demand Pdemand:

Pdemand(i) = Pmean load + Pdaily · cos

(
2π(i− 3)

24

)
+ Pannual · cos

(
2πi

8760

)
+ β̂demand(i)

(67)

No real power demand will be truly sinusoidal. However, the model is not intended to

model accurately, merely to provide something which is grossly similar in terms of behavior.

7.3.1.1 Load Demand Sensitivity

The random Gaussian noise series used to generate the load is generated once. Any of the

other parameters, including base load, annual variation, daily variation, noise variance, and

autocorrelation, can potentially be manipulated as noise variables.

7.3.1.2 Test Case Assumptions

In the test cases, it was assumed that Pmean load = 1000MW, Pannual = 200MW, and Pdaily =

500MW. The hourly noise was assumed to have a standard deviation σdemand = 50MW and

autocorrelation αdemand = 0.8. In the final demonstration case, all assumptions in units of

MW were reduced, so that Pmean load = 100MW, Pannual = 20MW, Pdaily = 50MW, and

σdemand = 10MW.

7.3.2 Demand Side Management

Demand side management is a broad term, and may include both infrastructure that is

controlled by the utility (for example a device that can override thermostats) and passive

programs (for example subsidized home weatherization). No attempt was made to model

any of this explicitly. Instead, DSM was simply modeled in terms of aggregated effects on
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demand, by adjusting Pmean load, Pannual, and Pdaily. A DSM “unit” was said to consist of

some pre-specified change to each of these, at some pre-specified cost.

This is not a very realistic way to model DSM. Not only does it fail to model spe-

cific changes due to particular technologies, but it uses a linear cost relationship, which is

unrealistic; there will probably be “low-hanging fruit” DSM measures that will be more

cost-effective, and implemented first.

7.3.2.1 Test Case Assumptions

In the tests performed in this thesis, one DSM “unit” was made to reduce mean load by

half a Megawatt, and to reduce daily amplitude by one Megawatt, with no change to annual

amplitude. Due to the method used to generate demand (where daily fluctuations caused

both negative and positive deviations from the mean load), the reduction in daily amplitude

actually caused an increase in baseload along with the decrease in peak load.

7.3.3 Wind Farms

Since there is no geographic information in the model, wind farms are treated as generically

as possible, using an approach in some ways conceptually similar to that employed by the

Energy Information Administration’s National Energy Modeling System (NEMS), though

with a simulation approach where NEMS uses a purely statistical model [33]. As an ini-

tialization step, an upper bound Nmax turb is set on the number of possible wind turbines

under consideration, and a Gaussian white noise series β
(j)
wind(1, . . . , i, . . . , 8760) is generated

for each possible turbine j = (1, . . . , Nmax turb), plus an extra “dummy” series (j = 0). As

before, autocorrelated standard Gaussian noise is then generated, but this time there are

Nmax turb + 1 series. For autocorrelation factor αwind, the series for a turbine j is:

β̂
(j)
wind(i) = αwind · β̂wind(i− 1)(j) + βwind(i)(j)

√
1− α2

wind (68)

Then, rather than dividing the turbines into discrete farms or arranging them geograph-

ically, every pair of standard Gaussian time series ( ˜beta
(j)
wind, β̃

(k)
wind) is made to have the same

spatial correlation δwind. To achieve this, they are all cross-correlated with the same dummy
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time series, β̂
(0)
wind:

β̃
(j)
wind(i) =

√
δwind · β̂

(0)
wind(i) +

√
1− δwind · β̂

(j)
wind(i) (69)

The Gaussian noise series are now autocorrelated with coefficient αwind and cross-correlated

with coefficient δwind. Since all pairs of turbines have identical cross-correlation, this is a

non-physically realizable set-up; in reality, closer turbines should be more strongly corre-

lated. However, the approach has the advantage of not requiring any geographical informa-

tion beyond a general idea of average proximity. This constant cross-correlation is used by

NEMS, and the EIA has compiled a table of average cross-correlation parameters to use for

different geographical regions of the U.S. [33]. One effect that is masked by the approach

is that in reality, more desirable lands will likely be built on first, resulting in diminish-

ing marginal cost effectiveness for later turbines. This effect would be difficult to estimate

without more specific wind farm planning, or at least very extensive historical data.

For a given mean wind speed w̄, the Gaussian noise is transformed into Rayleigh-

distributed wind speeds w with the inverse Rayleigh distribution and the standard Gaussian

CDF:

w = F−1
Rayleigh(Φ(β̃wind), w̄) (70)

Wind speeds are often modeled with a Weibull rather than a Rayleigh distribution if more

information is available, but in the absence of real wind data a Rayleigh (Weibull with shape

factor of 2.0) can be assumed. The wind speeds are then transformed through the wind

turbine power curve to yield power output. All wind turbines are assumed to have identical

normalized wind power curves Πwind(w), supplied by the modeler. The power curve that

was used is shown in Figure 38. It is assumed that their power output is constant over the

course of an hour, a not entirely realistic assumption that is nonetheless used by programs

such as HOMER [70]. Transmission losses are not modeled explicitly, though they may be

treated as a uniform de-rating of the wind turbines.

As a final step, for a given electric generation portfolio with a desired installed wind

power capacity, an appropriate number of wind turbines Nturb are selected, always in the
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Figure 38: Wind turbine steady-state power curve.

same order. Since installed capacity treated is a continuous rather than discrete input, this

will result in some “fractional” wind turbine. This last wind turbine is simply given an

appropriately small rated power, and the wind power curve is scaled appropriately. Though

this is not physically realistic, it allows the input and output to be smooth and continuous.

The total wind power at time t, then, is just:

Pwind,t =

Nturb∑
j=1

P
(j)
turb,rated ·Πwind(w

(j)
t ) (71)

Where P
(j)
turb,rated is the rated power of turbine j, and is the same value for all but the last

“fractional” turbine. Πwind(·) is the normalized power curve as a function of wind speed,

and w
(j)
t is the wind speed experienced by turbine j at time step t.

7.3.3.1 Average Wind Speed Sensitivity

Average wind speed can be adjusted as a noise sensitivity factor. Since the wind series are

stored as Gaussian noise prior to being transformed into Rayleigh noise, this is a trivial

matter of adjusting the transformation CDF. Thus as the average wind speed is adjusted,

the simulation results will shift smoothly and continuously, without chatter.
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7.3.3.2 Test Case Assumptions

In the test cases, each wind turbine was assumed to have a rated power of 2.7 MW, with

the power curve given in Figure 38. The mean wind speed was assumed to be 8.0 m/s, and

the spatial correlation was set to 0.5.

7.3.4 Photovoltaic Arrays

Photovoltaic arrays are treated in a manner similar to the treatment of wind farms. It is

assumed that a number of PV arrays are distributed throughout a geographic area, such

that they all experience cross-correlated clearness time series. Though this is a non-physical

assumption, it removes the need for explicit geographic modeling.

The technical modeling is based on the work of Graham, Hollands, and Huget, who over

the course of several papers in the 1980’s and early 1990’s developed a complete method

for generating synthetic hourly solar insolation time series [46][45][50]. Credit should also

be given to the Lilienthal, Gilman, and Lambert, whose documentation for the HOMER

provides a procedural guide to the method [70]. As an input, the model requires monthly

average clearness values k̄t, (atmospheric transmittance index or clearness index) which can

be obtained from a database such as NREL’s Typical Meteorological Year database [83].

As with wind turbines, as an initialization step, an upper limit is set on the maximum

number of Photovoltaic installations, Nmax PV. All installations are assumed to be of equal

pre-determined size. Separate hourly Gaussian white noise series are generated for each

possible installation, and these will be autocorrelated, cross-correlated, and used later to

generate clearness time series, in basically the same procedure as was used for wind turbines.

β̂
(j)
solar(i) = αsolar · β̂solar(i− 1)(j) + βsolar(i)

(j)
√

1− α2
solar (72)

β̃
(j)
solar(i) =

√
δsolar · β̂

(0)
solar(i) +

√
1− δsolar · β̂

(j)
solar(i) (73)

In addition to the set of hourly time series, a single daily time series with an autocor-

relation of 0.29 [46] is generated, and used for all PV arrays. From Gaussian white noise

βdaily(1, . . . , d, . . . , 365):

β̂daily(d) = (0.29)β̂daily(d− 1) +
√

1− (0.29)2βdaily(d) (74)
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From these Gaussian time series, the methods of Graham, Hollands, and Huget can be

used to find the insolation incident on a PV array, and from there the power can be easily

found. Details are not provided here, but the reader is directed to consult the original

source material [46][45][50] and the HOMER documentation [70]. The power is calculated

for each PV array, and summed:

PPV,t =

NPV∑
j=1

P
(j)
PV,rated ·Π

(j)
PV,t (75)

Where NPV is the number of PV installations, P
(j)
PV,rated is the rated power of each installa-

tion (assumed the same for all but one fractional array), and Π
(j)
PV,t is the normalized power

for installation j at time t.

7.3.4.1 Atmospheric Clearness Sensitivity

The average monthly clearness values k̄t can be modified as a sensitivity variable. However,

there are physical limits on their values. Average monthly clearness should go below 0.3

or above 0.7, since these are the ranges over which data exist [50]. Furthermore, monthly

values will already exist from data. A method was implemented to smoothly shift these

values collectively without ever violating the upper or lower limits.

A noise sensitivity variable was used, called κ, that was allowed to vary between -0.3

and 0.3. At values very close to zero, it served to directly modify the monthly clearness

values k̄t. However, at the extremes, the modified k̄t values asymptotically approached 0.3

or 0.7.

The modification to k̄t was as follows. First, k̄t and κ are normalized,

K =
k̄t − 0.3

0.7− 0.3
(76)

γ =
κ

0.7− 0.3
(77)

Then, for negative values of κ, the normalized value is adjusted:

ρ− = 2K (78)

K ′− =
ρ−

1 + exp−4γ(1/ρ−)
(79)
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Figure 39: Sensitivity modifications to mean monthly insolation k̄t. At small levels of
modification, the effects are linear, but near the limits of 0.3 and 0.7, the changes smoothly
approach zero.

For positive values of κ, the adjustment is:

ρ+ = 2(1−K) (80)

K ′+ = K + ρ

(
1

1 + exp−4γ(1/ρ+)
− 1

2

)
(81)

Finally, it is de-normalized, to yield an adjusted k̄t:

k̄′t = 0.3 +K ′ · (0.7− 0.3) (82)

The nature of the modification is shown in Figure 39. When κ is close to zero (the

lines near the original values), it acts as a direct modifier, in units of k̄t. However, this is

prevented from moving the value past its limits. When the original value of k̄t is close to

the limits, it is allowed to move linearly away from the limit, but in the other direction it

is immediately prevented from going past the limit.

7.3.4.2 Test Case Assumptions

In the test cases, a location of Atlanta, GA was assumed for the solar calculations (though

the previous assumption of a mean wind speed of 7.5m/s is highly inconsistent with this

location). The monthly clearness factors used can be seen in Table 5, taken from NASA’s
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Table 5: Monthly Average Clearness used in Model

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.504 0.517 0.545 0.575 0.541 0.552 0.532 0.523 0.548 0.576 0.522 0.493

Surface Meteorology and Solar Energy database [7], and accessed using the HOMER model

[70].

7.3.5 Energy Storage

Energy storage is implemented as generic and technology-independent, at a very low level

of detail. Storage equipment is specified by a one-way efficiency η1way, an internal energy

capacity EC , and a capacity-to-power factor ω (in units of time).

At any time step, if the storage is to be charged at a given power Pcharge, the internal

energy E simply changes by:

Et = Et−1 + η1way · Pcharge · dt (83)

Where t is the new time step, t − 1 is the previous time step, dt is the length of the time

step, and η1way is the one-way efficiency. If it is to be discharged at a power Pdischarge, the

internal energy changes by:

Et = Et−1 −
Pdischarge · dt

η1way
(84)

Capacity and power limits are implemented as simple constraints. There are no additional

modeling details specific to any technology.

7.3.5.1 Storage Policy Optimization

It is assumed that the primary use of the storage is for removing unpredictable variability

from load demand and non-dispatchable sources. Demand is subtracted from the non-

dispatchable power from wind and PV, to find the “surplus”.

Psurplus = (Pwind + PPV)− Pdemand (85)

The result will probably usually be negative, demand exceeds the renewable energy supply.

The remaining demand will have a certain degree of unpredictability. It is assumed that
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energy storage will be used to reduce the unpredictability as much as possible. To that end,

an optimization routine is used to determine storage charge/discharge policy.

The surplus signal is filtered with a simple exponential moving average high-pass filter,

with coefficient αstorage:

Plow,t = αstorage · Psurplus,t + (1− αstorage) · P ′low,t−1 (86)

Where P ′low is a modified surplus signal with some high-frequency noise removed. The

removed high-frequency noise is zero-mean, and is used as the charge/discharge command

for the storage.

Phigh = Psurplus − Plow,t (87)

PC/D = f(Phigh) (88)

Where PC/D is the actual charge/discharge power of the energy storage device (+ is charge).

A for a perfect storage device with infinite power and capacity, and unity efficiency, the

charge/discharge power would equal the high-frequency noise exactly. However, the storage

is limited by power and capacity, so it will not necessarily be able to follow this signal

exactly. Whatever it can do modifies the surplus signal further:

P ′surplus = Psurplus − PC/D (89)

And the demand is now modified, taking into account renewables and storage:

P ′demand = max(−P ′surplus, 0) (90)

This new demand will on average be higher, since the storage is not perfectly efficient.

However, it will have lower autocorrelation, since some of its high-frequency variability has

been removed by the storage. The degree to which the autocorrelation has been reduced will

be a function of the storage power and capacity, but also of the filter parameter αstorage. As

an iterative step, αstorage is optimized to result in the greatest reduction in autocorrelation.

This will result in the lowest fossil plant spinning reserve requirement, as calculated in the

next step.
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7.3.5.2 Test Case Assumptions

In the test cases, it was assumed that the one-way efficiency η1way = 0.837, and that the

capacity-to-power ratio ω = 2.0h.

7.3.6 Fossil Plant Spinning Reserve

After demand has been reduced by non-dispatchable sources and smoothed out with storage,

what remains will need to be met with dispatchable energy sources, in this model consisting

primarily of fossil plants. To be able to meet short-term fluctuations in demand, utilities

must keep some fossil plants online but producing at below capacity, so that they can be

throttled up to meet an increase in demand. The difference between a plant’s output and

its maximum output is called its spinning reserve.

The more predictable the demand, the lower the required spinning reserve. Since plants

that operate below their peak capacity are less efficient, utilities do not want to have more

spinning reserve than needed.

In this tool, required spinning reserve is calculated as:

Preserve = creserve ·
√

2− 2 ·Rdemand · σdemand (91)

Where σdemand is the standard deviation of the modified demand signal, Rdemand is the

(unitless) autocorrelation of the modified demand signal, and creserve is a coefficient that

depends on how reliable the designer wants the system to be. In the simple case of demand

that consists of autocorrelated Gaussian noise, a reserve coefficient of 2.33 would mean that

the designer wants to have enough reserve to deal with a 99th percentile hourly spike in

demand. Thus lower demand variance and higher demand autocorrelation result in a lower

spinning reserve requirement. In the model, creserve is kept constant throughout the year;

in reality, it will change over time, as demand volatility is not constant, and in fact much

more advanced methods would be used to calculate the reserve requirement.

7.3.6.1 Test Case Assumptions

In the test cases, a reserve reliability factor of 0.9999 was used, which meant creserve = 3.72.

In the tests found later in this chapter, this equation was calculated incorrectly, and this
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likely affected the results somewhat. It was corrected for the final demonstration case.

7.3.7 Natural Gas Plants

Natural gas plants are represented with a simple linear fuel consumption relationship:

F = ademand · P ′demand + areserve · P ′reserve (92)

That is, there is a fuel rate per unit of produced power, and a (smaller) fuel rate per unit

of spinning reserve. Rather than model plants as discrete units, instead they are modeled

as a single aggregate plant. The spinning reserve requirement is taken form the previous

section, and an additional half plant is added:

P ′reserve = Preserve +
1

2
Pgas,rated (93)

Where Pgas,rated is the rated power of an individual plant, assumed to be the same for all

plants. The important assumption is that, since only integer plants can be brought online,

rarely will the required amount of spinning reserve be met exactly; and since the spinning

reserve must always be greater than or equal to the requirement, on average half of a plant’s

worth of extra spinning reserve will be online.

If the desired reserve cannot be met, because there are not enough plants available,

there will be a capacity shortage:

Pcapacity shortage = max(0, Preserve + P ′demand −
Ngas∑
(j=1)

P
(j)
gas,rated) (94)

The last term, the total plant capacity, is simply specified by the designer, so though (as

with wind and solar power) there might be some “fractional” plant, there is no need to

calculate what it is or deal with it explicitly.

7.3.7.1 Natural Gas Price Sensitivity

In reality, natural gas price is volatile, and fluctuates with some degree of unpredictability.

In the model, it is not treated as a stochastic time series, but instead as a constant multiplier

on fuel price, and as such can be treated as a noise variable. As with the overall approach

of averaging costs over a full year, this tends to mask cost volatility and is not ideal.
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7.3.7.2 Test Case Assumptions

For the test cases in this chapter, the plant installed power was Pgas,rated = 200MW, and in

the final demonstration case it was set to 10MW. Spinning reserve was set to consume fuel

at 20% the rate of produced power.

7.3.8 Market Purchases

Whatever power cannot be supplied by all sources in the portfolio is assumed to be obtained

through market purchases from other regions. The specific pricing structure for this is not

modeled; instead, a uniform high cost is assumed.

7.3.8.1 Market Power Price Sensitivity

Though market price volatility is not modeled with a time series, it can be adjusted as a

noise variable.

7.3.9 Calculating Cost of Energy

For a particular portfolio, the cost of energy was found as:

COE =
C(fuel) + C(market purchases) +

∑
(C(capital))∑

Pdemand · dt
(95)

Where the C’s are just individual costs. The capital costs were given by the designer in

units of annualized costs, the fuel was assumed to have a fixed price per unit, and market

purchases were assumed to have a fixed price per unit energy. In the examples and tests in

the remainder of this document, cost of energy will be given in units of $/MWh.

7.4 Characterizing the Output Space

In order to characterize the output space, a very large (N = 8000) Latin Hypercube design

of experiments was created, along with a large set of random validation cases (N = 2000).

Seven of the model’s inputs were varied, over ranges shown in Table 6.

Average wind speed and average clearness were the only two noise variables studied. The

reason for this was not that they were the only variables of interest, but because the effects

of other noise variables could be studied without running simulations. Natural gas price
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Table 6: Design of Experiments Ranges for Simulation Model Testing

Type Variable Units Min Max

Design

Wind turbines MW rated capacity 0 2000
PV installations MW rated capacity 0 2000
Energy storage MWh capacity 0 2000

Natural gas plants MW rated capacity 0 2000
Demand Side Management “units” 0 100

Noise
Wind speed m/s 6 9

Average clearness κ -0.12 0.12

Table 7: Neural Network Surrogate Model Fits

Response R2 RMSE* (training data) RMSE* (holdout data)

Natural Gas Fuel Used 0.998 0.0083 0.0080
Purchased Energy 0.999 0.0051 0.0054

*Error was normalized over the range of the responses

and market energy cost had purely linear effects; if fuel usage and market energy usage were

tracked as outputs of the simulation model, there was no need to run simulations for them.

Total demand sensitivity, while not strictly linear, could be approximated by re-scaling the

entire system.

Running 10,000 simulations did not take very long; thanks to the simplicity of the model,

it completed in under an hour. Once the data was collected, neural network surrogate

models were fit to two of the simulation outputs, namely fuel used and purchased energy.

A summary of their fits is shown in Table 7.

Once these two responses had been regressed, and with the additional knowledge that

adding DSM reduced the total demand by a linear factor, the energy cost could be very

inexpensively found as a function of design and noise variables. Cost was calculated with

the surrogates, and the variables of demand sensitivity and market energy price sensitivity

could now be adjusted. Capital costs could also be adjusted, but were not treated as noise

variables. For simplicity, all noise variables were assumed to have triangular distributions,

with minimum, maximum, and most likely values, and in some cases their ranges were

restricted compared to their regression ranges. The full list of variables are shown in Table 8.

This allowed visualization and testing, in order to characterize the behavior of the model
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Table 8: Full List of Input Variables

Most
Type Variable Units Min Max Likely

Design

Wind turbines MW rated capacity 0 2000
PV installations MW rated capacity 0 2000
Energy storage MWh capacity 0 2000

Natural gas plants MW rated capacity 0 2000
Demand Side Management “units” 0 100

Noise, Wind speed m/s 6 9 7.5
internal Average clearness κ -0.08 0.08 0.0

Noise,
Natural Gas Price $/MWh 24 60 30

Demand (mult) 0.8 1.2 1.0
external* Market Transaction Price $/MWh 100 300 200

*The effects of these variables could be found by linear re-scaling of the surrogates

and (in the next section) to develop a fully analytic test problem with similar properties.

7.4.1 Visualizing the Output Space

After surrogates had been regressed, the design space could be visualized. A series of slices

are shown in Figure 40. The subspaces appear quite smooth. The first two slices have

single local minima; the last appears largely linear. Bear in mind that these are just slices.

Capital costs have been fixed at values which are described in a later subsection.

A set of slices through noise space are shown in Figure 41. All noise subspaces, at least

for these design variable settings, are monotonic. The market transaction price and gas

price subspaces are perfectly linear, because that is how they are constructed.

For all the subspaces visualized, the response is smooth, and at least in these slices,

it appears unimodal. The noise sensitivity variables have close to linear effects, even the

ones which are not linear by construction. With the exception of Figure 40(b), all of these

subspaces could probably be fit well by polynomials. Some observations, then:

Observation: The cost response appears smooth over the design variables, and possibly

unimodal.

Observation: The cost response appears monotonic and close to linear over the noise

variables.
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Figure 40: Slices of energy cost as a function of design variables. In all plots, all other
inputs have been set to their midpoints. From L tor R, (a) shows installed wind and PV,
(b) shows installed wind and natural gas plant capacity, and (c) shows energy storage and
DSM. Both (a) and (b) have minima, and (c) is monotonic in both dimensions. The effects
of DSM and storage are milder, at least for these noise variable settings, but the effects are
non-zero. All costs are in $/MWh.

Figure 41: Slices of energy cost as a function of noise variables. In all plots, all other inputs
have been set to their midpoints. From L to R, (a) shows cost declining with increased
mean insolation and wind speed, (b) shows costs increasing with natural gas price, and (c)
shows only a small variation with market transaction price, but only because this portfolio
does not require many outside energy purchases. All subspaces are relatively linear. All
costs are in $/MWh.
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It is possible, however, that some features are being masked by the neural network

surrogates used in this exploration, and it is difficult to fully generalize based on a few

slices. The next subsection will explore the surrogates using optimization.

7.4.2 Multi-Objective Optimization of the Model

With the fast-running neural network surrogates, exhaustive techniques could be used to

optimize the design space. For every design of interest, 10,000 Monte Carlo samples were

used to estimate the mean Cost of Energy, and the 95% Value-at-Risk. The capital costs

were (somewhat arbitrarily) set as shown in Table 9, and the NSGA-ii Multi-Objective

Genetic Algorithm with a population of 5,000 was run for 1,000 generations. The resulting

Pareto frontier is shown in Figure 42. In objective space, it can be seen that the range of

the frontier is very small, even though the range over all possible portfolios is quite large,

as can be seen from a scatterplot of random designs in Figure 43. Relative to the output

range, then, high accuracy will be required in order to distinguish the frontier from the rest

of the objective space:

Observation: The range of the Pareto frontier is small relative to the total range of

the objectives.

Observation: The Pareto frontier is (mostly) concave.

In such an extreme case, it could be argued that the designer does not really care

about the whole frontier, since in absolute terms any portfolio on such a small frontier is

essentially indistinguishable from another. However, it will be shown later that different

problem assumptions result in a larger frontier, but which is still small relative to the

entire objective space. Looking at electric power utility IRPs, NorthWestern’s frontier has

a mean energy cost range of $69-85/MWh, and a risk range of approximately $80-90/MWh

[84]. This is still significantly smaller than the several hundred $/MWh range of the entire

portfolio space.

The normalized design variable settings along the frontier are shown in Figure 44, using

a plot type after Daskilewicz [25]. The position along the x-axis shows the position along
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Table 9: Capital Costs, Scenario 1

Equipment Annualized Capital Cost Units

Wind Turbines 100,000 $/MW
Photovoltaic Arrays 150,000 $/MW
Energy Storage 100,000 $/MWh
Natural Gas Plants 60,000 $/MW
Demand Side Management 50,000 $/unit

Figure 42: Pareto frontier for Scenario 1. Note the very small range on both mean and
VaR.

Figure 43: Scatter plot of random designs, Scenario 1. Note that the Pareto frontier is
barely a speck in the lower left-hand corner. Under this set of assumptions, the Pareto
frontier is a very small fraction of objective space.
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Figure 44: Daskilewicz-style [25] plot of design variable values over a normalized frontier.
From L to R, the mean increases from low to high.

Figure 45: Mean and value-at-risk along the normalized frontier. The x-axis is the same as
in the previous plot.
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Table 10: Capital Costs, Scenario 2

Equipment Annualized Capital Cost Units

Wind Turbines 110,000 $/MW
Photovoltaic Arrays 95,000 $/MW
Energy Storage 7,500 $/MWh
Natural Gas Plants 85,000 $/MW
Demand Side Management 120,000 $/unit

the Pareto frontier from Figure 42, from low mean to high mean. Figure 45 shows the mean

and VaR values along the frontier. From looking at Figure 44, it can be seen that the design

variables vary smoothly. PV and storage remain near zero, unsurprising due to their high

cost.

Under the assumptions used so far, the Pareto frontier appears quite simple. In design

space, it is a continuous path. This need not always be the case, however. It was found that

the nature of the frontier was sensitive to assumptions. In Table 10, a second set of capital

costs is shown. Though this set is further from reality than the previous one (note the very

low PV and storage cost, for example), it results in a drastically different frontier. Though

the shape in objective space appears similar, and the objective range is still small, in design

space it is clear from Figure 47 that there is a large jump in DSM values at around 0.6,

and several smaller jumps elsewhere. The optimal amount of DSM moves quickly from the

low end of its range to the high range. Other variables also appear to “jump” at the same

points, though over smaller ranges.

This scenario was found, it should be noted, essentially by “optimizing” the capital

costs to result in more interesting behavior. A design problem with a multi-part frontier

is harder to solve, since it requires locating two or more parts of the space; it is the multi-

objective equivalent of a multi-modal optimization problem. If such a scenario can be

artificially created by adjusting cost assumptions, then it is reasonable to assume that it

could happen in a real problem, and it is reasonable to test methods on problems with this

more challenging characteristic.
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Figure 46: Pareto frontier, Scenario 2. The general shape of the frontier appears similar to
in Scenario 1, though with different values because the cost assumptions have been changed.

Figure 47: Daskilewicz-style [25] plot of design variable values over a normalized frontier.
From L to R, the mean increases from low to high.
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Figure 48: Mean and value-at-risk along the normalized frontier. The x-axis is the same as
in the previous plot.

Observation: Under certain sets of assumptions, the frontier consists of multiple dis-

crete sections.

Based on the set of observations about the design problem, the next chapter will develop

an analytic test problem that shares those characteristics, as well as other characteristics

which make it useful for experimentation.
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CHAPTER VIII

SCALABLE TEST PROBLEM

In the previous chapter, a low-fidelity electric portfolio test problem was developed and

characterized. In a later chapter, it will be used to demonstrate that the method can be

used to efficiently find the mean/risk Pareto frontier for such a problem. However, recall

that two of the research questions pertained to the sensitivity of the method to the numbers

of design and noise variables:

Research Question 1: For finding mean/risk Pareto frontiers, how does the relative

efficiency of combined and crossed arrays depend on the number of noise variables?

Research Question 2: For finding mean/risk Pareto frontiers, how does the relative

efficiency of design of experiments and multi-objective statistical improvement change

with the number of design variables?

Answering these questions will help inform a designer as to when the combined-array

multi-objective statistical improvement method should be used, as opposed to another

method. In order to test the relative sensitivity of the methods, it will be desirable to

change the number of design and noise variables without changing any other characteristics

of the problem. To that end, a scalable test problem is developed here.

8.1 Test Problem Characteristics

The test problem should be as similar as possible to an electric power portfolio problem.

Recall the observations from the last chapter:

• The cost response appears smooth over the design variables, and possibly unimodal.

• The cost response appears monotonic and close to linear over the noise variables.
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• The range of the Pareto frontier is small relative to the total range of the objectives.

• The Pareto frontier is (mostly) concave.

• Under certain sets of assumptions, the frontier consists of multiple discrete sections.

In addition to matching these characteristics, there are several other characteristics that

are desirable for a test function:

• Scalable: As the number of design and noise variables is changed, the problem should

not change fundamentally in any other way

• Analytically known frontier: In order to judge the effectiveness of the method,

the true Pareto frontier should be known exactly, as well as the mean and risk values

along it

• Fast to evaluate: The function should evaluate very quickly, to allow as many tests

as possible to be run

8.2 Test Problem Description

A test problem was created to meet the previously described characteristics.

8.2.1 Analytical Pareto Frontier

In order to better control the nature of the Pareto frontier, and so that the frontier would

be known analytically, the frontier itself was first described functionally in objective space.

A dummy variable, XD, was allowed to vary from 0 to 1, and mean and Value-at-Risk were

defined in terms of it. First, after a series of constants were defined, a function Y (XD) was
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Figure 49: The Pareto frontier of the scalable test problem. Gray points are those along
the dummy variable XD from 0 to 1, blue circles are those points that lie on the frontier.

defined:
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(
−4

5π

)
(96)

b =
−2a

5π − 4a
(97)

C0 =
1

4
cos(

5πb

4b− 2
) +

b

2− 4b
= 0.2582 (98)

C1 = 1/

(
C0 −

cos(2.5π(1− b))
4(1− 2b)

+
1− b

2(1− 2b)

)
= 1.1930 (99)

Y (XD) = C1

(
(XD − 0.1)/0.8− b

2(1− 2b)
− 5π

8
cos(

(XD − 0.1)/0.8− b
1− 2b

)

)
(100)

If mean and risk along the Pareto frontier are defined in terms of this function as follows,

µP = Y (XD) + µ0 (101)

ρP = Y (1−XD) + ρ0 (102)

then the set of points along XD will trace a curve in objective space, shown in Figure 49.

The mean and risk as a function of XD are shown in Figure 50.

This resulted in a Pareto frontier with two discrete sections and a small slightly convex

region in the center. Note that as will be shown in a later section, the exact values of mean

and value-at-risk will differ slightly from these equations, but not enough to drastically
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Figure 50: The objectives of mean and Value-at-Risk as functions of the dummy variable
XD.

change the characteristics of the frontier.

8.2.2 Design Space

In order to make the test function fully scalable in terms of design variables, the frontier

was defined as always occurring along the line (d1 = d2 = d3 = ... = dpD), where pD is the

number of design variables. All input variables were confined to the range [0,1].

To transform the design vector D into the dummy variable XD, the design variables

were simply summed and normalized:

XD =

∑pD
i=1(di)

pD
(103)

To ensure that the Pareto frontier occurred only along the line (d1 = d2 = d3 = ... =

dpD), a penalty function was implemented,

B = 15 ·
(∑

m |XD −Dm|
pD

)2

(104)

which is simply the square of the 1-norm distance to the point nearest in Euclidean space.

The idealized mean (µ∗) and value-at-risk VaR∗ were then determined as:

µ∗ = Y (XD) + 5 + B(XD) (105)

VaR∗ = Y (1−XD) + 7 + B(XD) (106)
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Figure 51: An implementation of the test function with two design variables. The colored
surface is the mean, and the gray mesh is the Value-at-Risk. The frontier lies in the trough
along the line (d1 = d2), and is represented by white circles (mean) and red circles (VaR).

For a two-objective problem, the mean and VaR are shown as a function of design space

in Figure 51. A scatter plot of the mean and VaR objective values for randomly selected

designs is shown in Figure 52, showing that they are spread out over a range of about 20,

and the Pareto frontier is a relatively small 1x1 box in the lower left corner.

Thus for any design D, a value for mean and Value-at-Risk are determined. However,

as will be seen next, these values are merely approximate.

The frontier can be seen to consist of two discrete sections, one approximately between

0.1 < X < 0.29, the other between approximately 0.71 < X < 0.9. The exact extent will

be defined later.

8.2.3 Noise Space

It was assumed that all noise variables were independent and standard normal:

Si ∼ N (0, 1) (107)

S ∼ MVN(0, IpS ) (108)

Where pS is the number of noise variables.

A perfectly linear noise space with slope dT/dS would result in an output distribution
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Figure 52: Scatterplot of objective values for randomly selected designs. This is the equiv-
alent of Figure 43 from Chapter 7. The Pareto frontier represents a small fraction of the
objective space, occupying a 1x1 box when both objectives range up to about 20.

that is also normal, with a variance easily found analytically:

(σ2)∗ =

pS∑
i

σi

(
dT

dS

)2

i

=

pS∑
i

(
dT

dS

)2

i

(109)

Where each σ2
i is the variance of noise dimension i, and these are all assumed to be equal

to 1.0. Furthermore, this would result in an analytically known Value-at-Risk:

VaRα = µ+ Φ−1(α) · σ (110)

where α is the confidence level, Φ−1 is the standard inverse normal CDF, and the term

Φ−1(α) is referred to as c.

For a moment, if a perfectly linear noise space is assumed, and if it is furthermore

assumed that the slope is equal in all dimensions, then the already-determined Value-at-

Risk can be used to define the noise slope for each dimension:

dT

dS i
=
dT

dS j
=

√
(VaR− µ)2

c2pS
(111)

a∗ (112)

where the label (*) refers to a term which has been prescribed.
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Figure 53: Response of test function as a function of noise dummy variable XS .

However, even though the portfolio simulation model was shown to have a roughly linear

noise space (and was in fact perfectly linear in several dimensions), a perfectly linear noise

space will be “too easy” to model, unrealistically so. A crossed-array DoE with only pS + 1

points would give perfectly accurate estimates of all statistics (where pS is the number of

noise variables). Instead, a function was implemented that was monotonic and close to

linear in every dimension, but not perfectly linear.

As with the design space component of the test function, in noise space the function

depends on a dummy variable, XS , which is a sum of the noise variables, this time weighted

to adjust the noise sensitivity.

XS =
∑
i

a∗Si (113)

This dummy variable is fed into a function which is approximately, but not precisely,

linear, as shown in Figure 53. The function is a linear term plus a sum of radial basis

functions:

YS(XS) = XS +

q∑
j=1

ajY exp(−1

6
(XS − ajX)2) (114)

where the summation is over basis vectors j, each of which has coefficients ajY and ajX .

Three basis functions are used, and a table of the values used for the coefficients is provided
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Table 11: Coefficients used to Compute YS

Basis no (j) aX aY
1 -1.20735021812485 -9.20988520187053
2 0.751898663420942 17.6118822181628
3 1.45605761640806 -8.58052401975203

in Table 11. To evaluate the test function, then, the response is simply:

T = µinput + YS(XS) (115)

where µinput is the mean value found from the analytic frontier and penalty function.

Because the noise space is approximately linear, but not exactly so, the true statistics

will not match the idealized ones and must be re-calculated using numerical integration.

However, regardless of how many noise variables there are, the dummy variable XS will

always be normally distributed:

XS ∼ N (0, (σ2)∗) (116)

(σ2)∗ = pS(a∗)2 (117)

This (σ2)∗ is the same variance that would be seen in the output for a perfectly linear noise

space, and it is set according to the analytically determined VaR. Since XS is Gaussian, it

is an easy matter to perform a 1-dimensional numerical integration and find the true mean

and variance:

µ =

∫ ∞
−∞

YS(XS)p(XS)dXS (118)

σ2 =

∫ ∞
−∞

(YS(XS)− µ)2p(XS)dXS (119)

and the true Value-at-Risk can be even more easily found:

VaR = YS(VaR∗ − µ∗) (120)

where again µ∗ and VaR∗ are those that were determined by the analytical frontier function.

8.3 Summary of Test Function

The test function developed here is designed to generally match the characteristics of the

motivating energy portfolio problem. Its value for any point in design and noise space is
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known analytically. Moreover, the mean, variance, and value-at-risk for any design can be

computed using simple 1-dimensional numerical integration, and its Pareto frontier is always

known exactly. The problem can be scaled to have any number of design and noise variables

without any other substantial changes, and so is suitable for studying the sensitivity of

methods to problem dimensionality. A summary table of the relevant equations is shown

below.

First, find the dummy variable value:

XD =

∑pD
i=1(di)

pD

Then, evaluate the Pareto function:

a = arcsin

(
−4

5π

)
b =

−2a

5π − 4a

C0 =
1

4
cos(

5πb

4b− 2
) +

b

2− 4b

C1 = 1/

(
C0 −

cos(2.5π(1− b))
4(1− 2b)

+
1− b

2(1− 2b)

)
Y (XD) = C1

(
(XD − 0.1)/0.8− b

2(1− 2b)
− 5π

8
cos(

(XD − 0.1)/0.8− b
1− 2b

)

)
Next, calculate the off-Pareto penalty:

B = 15 ·
(∑

m |XD −Dm|
pD

)2

and find the idealized (*) mean and Value-at-Risk, as well as the idealized standard

deviation:

µ∗ = Y (XD) + 5 + B(XD)

VaR∗ = Y (1−XD) + 7 + B(XD)

σ∗ =
(VaR∗ − µ∗)

c

If the goal is to evaluate the test function on design/noise values, use the noise sub-space
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directly:

a∗ =
σ∗
√
pS

XS =
∑
i

a∗Si

YS(XS) = XS +

q∑
j=1

ajY exp(−1

6
(XS − ajX)2)

T = µ∗ + YS(XS)

If the goal is to find the (true) mean and Value-at-Risk, integrate and evaluate:

µ =

∫ ∞
−∞

YS(XS)p(XS)dXS

σ2 =

∫ ∞
−∞

(YS(XS)− µ)2p(XS)dXSXS ∼ N (0, (σ2)∗)

VaR = YS(VaR∗ − µ∗)

Since the problem is designed to be similar to an energy portfolio problem, it may not

be perfectly suitable as a surrogate for all engineering problems. Its noise spaces are all

monotonic, a characteristic found in the energy portfolio test problem but not to be assumed

generally. Further, it is relatively smooth, and though it is multimodal it is not excessively

so. The Pareto frontier occurs in two sections in design space, and has a small concavity in

one part of the objective space. Lastly, in order to make the problem scalable, it depends

functionally on a sum of all noise variables, and on an only slightly more complex function

of design variables.

Now that a test problem has been developed that is scalable, Research Questions 1 and

2 with regard to the scalability of methods can be answered; and since the test problem runs

in negligible time, all computational resources can be devoted to the methods themselves.
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CHAPTER IX

EXPERIMENTS: WARM-START SIZE AND EFFICIENCY

In previous chapters, several general classes of methods were discussed for solving robust

design problems. Of principal interest were two classifications: combined-array vs. crossed-

array methods, and design of experiments vs. multi-objective statistical improvement meth-

ods. This leads to a classification of methods shown in Table 12. The shorthand acronyms

found in the table will be used through the rest of this document. The lower right box,

combined-array statistical improvement methods (C-MOSI), was identified as a gap in the

literature.

In this taxonomy, the two groups of “combined-array methods” (C) and “crossed-array

methods” (X) can each be thought of as continuums. A MOSI method begins with a “warm-

start” DoE to fit an initial Bayesian surrogate; this warm-start could represent any fraction

of the total samples, from a few percent to nearly the entire set.

Say the designer has some desired level of accuracy along the true Pareto frontier. They

can achieve that level of accuracy by starting with a warm-start DoE, and running a MOSI

method until the surrogate is sufficiently accurate. A set of possible “paths” are shown

notionally in Figure 54, each starting at a warm-start DoE and increasing in accuracy until

a threshold is reached.

Increasing the DoE size should result in higher initial accuracy, shown conceptually in

Table 12: Taxonomy of Methods

Crossed Array Combined Array

Design of

Experiments X-DoE C-DoE

Multi-Objective

Statistical X-MOSI C-MOSI

Improvement
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Figure 54: Notional warm-start DoEs (circles) and MOSI paths (ending in dots). In (a),
MOSI sampling reduces error faster than increasing DoE size. In (b), it would be better
simply to use a larger DoE rather than run MOSI.

Figure 54 by the reduced error of the larger DoE sizes. If the MOSI paths reduce error faster

than is achieved by increasing DoE size, then MOSI can be shown to be more efficient, as

in Figure 54(a). If, on the other hand, the paths remain “above” the DoEs as in (b), then

the MOSI approach is a waste of samples.

Another way of thinking about the different warm-start sizes is in terms of initial num-

ber of samples and final number of samples. This is shown conceptually in Figure 55.

Each dot in the figure represents a full execution of an adaptive sampling method, from a

warm-start DoE until a satisfactory level of accuracy is reached. Presumably, there will be

some warm-start size that is “optimal”, that results in the fewest total samples in order to

reach the desired level of accuracy. However, the process is somewhat stochastic; a Latin

Hypercube DoE is randomly generated, and there is likely to be some degree of random-

ness and imperfection in the optimization processes used to select subsequent points. In

Figure 55(a), the optimal warm-start size lies somewhere between A and B. A warm-start

size of A samples has the potential for the lowest number of total samples, but is risky. A

choice of B would reliably result in fewer samples than a pure DoE approach. By point C,

a DoE by itself reliably provides sufficient accuracy. Because the upper bound at B is lower
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than C, a MOSI method can be expected to be more efficient with high confidence.

A second possible result is in Figure 55(b), where the warm-start size is not reliably

large enough until it reaches the size necessary for a DoE-only approach. In such a case,

using a MOSI approach offers no benefit; in half the of attempts, it reaches the accuracy

threshold in fewer than C runs, but in the other half it requires more than C runs.

Figure 55: Notional initial and final samples for a MOSI method. Here it is assumed that a
MOSI method is run until the error drops below a threshold. In (a), MOSI is more efficient:
A is the risky minimal warm-start size, B is the safe warm-start size, and C is the size where
a DoE is sufficient. In (b), any warm-start smaller than C risks using more samples than
the safe DoE size.

In an actual design exercise, there is no way of knowing the true accuracy of the surrogate

along the (also unknown) true Pareto frontier. However, with a test function, the true

frontier is known. The first experiment aims to find the optimal warm-start size, first for

combined-array and then for crossed-array MOSI, for the test problem with 2 design and 2

noise variables. If the optimal size is found to be smaller than would be required for a purely

DoE-based approach, as shown conceptually in Figure 55(a), this will also demonstrate that

MOSI adaptive sampling methods are more efficient than pure DoE methods. Further, if

the samples required for a C-MOSI method are lower than for the other three methods, this

will answer Research Question 3, re-printed here:
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Research Question 3: Is there a design scenario where a combined array Multi-

Objective Statistical Improvement method (C-MOSI) out-performs both crossed-array

and design of experiments methods in terms of efficiency?

As will be shown, C-MOSI was found to be encouragingly efficient for the test problem,

but with important limitations regarding ill-conditioning of Gaussian Process surrogate

models.

The same tests can be run for different numbers of design and noise variables, and the

sensitivity of the four methods found from the resulting data. This will comprise the second

experiment.

9.1 Experimental Assumptions and Details

Before the experiments themselves are discussed, this section will present the experimental

details and assumptions common to both experiments.

9.1.1 Gaussian Process Model Simplification

Gaussian Process models were used, because they allowed Second Order Probabilities

(SOPs) to be calculated analytically [4][88]. In order to allow for greater numbers of test

cases, the Gaussian Process model was “pre-tuned”. The correlation vector θ is normally

optimized, so that each θi best represents the degree of correlation along dimension i. Since

the test problem is already well-known, some degree of pre-optimization is possible, to re-

duce the computational effort required in finding this optimal θ vector. It is known that all

design dimensions are identical to each other, as are all noise dimensions; the values of θi

were therefore constrained to be equal to a single value θD for all design dimensions, and

also to be equal to a single value θS for all noise dimensions. Furthermore, the relative

values of θD and θS were found to largely obey the relationship:

1√
θS

= 11.25
1√
θD

(121)

Where the term 1/
√
θi has the same units as the input space, and can be understood as

a sort of “width” parameter. Once this relationship had been fixed, the optimization of θ
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became a single-objective optimization exercise, and could be done quickly with a golden-

section line search.

Additionally, rather than optimizing θD directly, the optimization was performed on a

transformed variable w:

w = ln

(
1√
θD

)
(122)

which can be understood as the logarithm of a “width” parameter. In the optimization

step, this is allowed to vary between -3 and 3.

9.1.2 Gaussian Process Model Initialization

As is described in Appendix A, some of the SOP calculations do not depend on the design

variables, and can be computed once when the GP is fitted. These are performed as an

initialization step. The final SOP calculations are performed within already expensive

optimization loops, so it is important not to perform unnecessary computations.

9.1.3 Pseudo-VaR

In order to allow for greater numbers of test cases, second-order probabilities were computed

using O’Hagan’s analytical method [88]. Because analytical expressions have not been

derived for percentile directly, Apley et al.’s metric was used instead, and is referred to here

as pseudo-VaR or pVaR. The statistics of interest, then, computed using a combination of

O’Hagan’s and Apley et al.’s analytical second order probability equations, were aleatory

mean:

µa ∼ N (E[µ], V ar[µ]) (123)

and pseudo-value-at-risk:

pVaR = µ+ c · σ (124)

pVaR ∼ N (E[pVaR],Var[pVaR]) (125)

E[pVaR] = E[µ] + c · E[σ] (126)

Var[pVaR] = Var[µ] + c2 ·Var[σ] + 2 ∗ c · Cov[µ, σ] (127)
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Where the values E[µ], Var[µ], E[σ], Var[σ], and Cov[µ, σ] are all second-order probabilities

computed using O’Hagan’s equations [88] and Apley et al.’s equations [4]. Details can be

found in Appendix ??. The value of c was set to that corresponding to a 95% VaR, assuming

a standard normal distribution, or approximately 1.645.

9.1.4 Definition of Error

The goal of a Pareto-frontier-based robust design method is twofold:

• Predict with accuracy which designs lie on the Pareto frontier

• Predict with accuracy the mean and risk of designs that are on the Pareto frontier

The first of these requires that the predicted frontier lie close to the true frontier in design

space. To quantify the first goal, a predicted frontier would need to be determined through

optimization, and this frontier would need to be compared to the true frontier. This is not an

easy comparison to make, since the frontiers are multidimensional surfaces or curves passing

through higher-dimensional spaces, and it requires defining the true frontier as continuous

rather than merely identifying discrete points. The second goal is easier to quantify, and is

the chosen metric of goodness.

The true Pareto frontier in mean/pVaR space is known analytically. To quantify the

accuracy of the model, a set of 20 design points were selected, evenly spaced along the two

sections of the frontier. The test function’s true aleatory mean (µ
(i)
true) and pseudo-VaR

(pVaR
(i)
true) at each point i was found and stored.

The surrogate’s predicted µµ and µpVaR were found at these points, and the root mean

square error was found:

RMSE =

√
1

2
(MSEµ +MSEpVaR) (128)

MSEµ =
1

N

N∑
i=1

(
µ

(i)
true − E[µ(i)]

Rµ

)2

(129)

MSEpVaR =
1

N

N∑
i=1

(
pVaR

(i)
true − E[pVaR(i)]

RpVaR

)2

(130)

Where Rµ and RpVaR are the range of each statistic in objective space, used to normalize

the response. These were taken to be the range on the Pareto frontier, rather than the
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Figure 56: A C-MOSI run’s error progression, test problem with pD = pS = 2. The accuracy
of the model progressively improves until around 100 samples are reached, after which it
quickly gets worse. This is due to ill-conditioning effects in the GP model.

range over all of objective space, since the Pareto frontier was the range of interest. For the

test problem, this range was 1.0 in both cases.

9.1.5 A Note on Ill-Conditioning of the Covariance Matrix

For many of the combined-array MOSI runs, the RMSE along the frontier declined as

samples were gradually added to the surrogate, but then began to increase again. A sample

path for such a run is shown in Figure 56.

Why should the surrogate’s accuracy get worse as information is added? It is because the

covariance matrix becomes ill-conditioned. The condition numbers for even small numbers

of samples are on the order of 106, and as the condition number approaches 1010 the error

quite suddenly stops getting lower and instead spikes up. The ill-conditioning problem is a

well-known issue with Gaussian Process models [57][60].

The exact condition number at which error began to rise was not always predictable,

however. The condition number at the point of minimum error varied from 107 all the way

up to around 1011. Because of the wide range of “critical” condition numbers, condition

number by itself was not a useful stopping criteria. Stopping criteria will be discussed in a

later section.
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9.1.6 Algorithm Details, Combined (C) Arrays

This subsection will provide the algorithmic details necessary to replicate the experiments.

The details here pertain to the combined-space models, C-DoE and C-MOSI.

9.1.6.1 Warm-Start Design of Experiments

An initial Latin Hypercube Sampling (LHS) Design of Experiments was created using the

built-in MATLAB function lhsdesign, with the “correlation” criteria (which minimizes the

correlation between the columns of the design). There are algorithms available to create

more optimal LHS designs for Gaussian Process models, such as presented by Forrester et

al. [39][38], but due to the high computational cost and the large number of experiments

required, the relatively inexpensive MATLAB function was used instead. This might result

in some degradation of performance relative to what is possible, and therefore any dec-

larations with regard to the relative merits must be qualified. The lhsdesign function is

random; it generates random designs, and then selects the one that best meets the desired

criterium. The default number of iterations, 5, was used. The design variable columns were

normalized over the range [0,1], and the noise variables over the range [-3,3].

In the case of the C-MOSI runs, this initial sample served as the warm-start design; in

the C-DoE runs, it constituted the whole sample set. Once the initial points were selected,

a GP model was fit according to the procedure described previously. The quality of the

initial fit, and how well that initial fit allows accurate prediction along the true Pareto

frontier, was highly dependent on the initial sample, so the RMSE of the warm-start DoE

varied a great deal from one LHS sample to the next. Repeated trials were therefore very

important.

9.1.6.2 Optimization of Design Sample, C-MOSI

Once a GP had been fit to the initial warm-start LHS design and the SOP calculations have

been initialized, optimization was used to find the design D∗ with the greatest expected

Pareto improvement.

First, the current Pareto set was found. The current set of sampled designs were used as
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candidates, as described in section 6.3, and SOP analysis was performed at all designs. The

epistemic expected value of the mean and pseudo-VaR were found, as well as the epistemic

standard deviation for both parameters, using the procedure described in Appendix A

Then, a genetic algorithm was used to find a candidate design with the greatest exected

improvement over the Pareto set. The built-in MATLAB genetic algorithm function ga

was used, with a population of 20, for a maximum of 100 generations, but otherwise at

default settings. At each design, the expected Pareto improvement was calculated with the

modified Emmerich et al. method described in section 6.3. Note that the computation

time here was dominated by a single term in the computation of SOPs, as described in

section 6.6, which scaled as O(n3).

9.1.6.3 Optimization of Noise Samples, I-SOP

Once the design D∗ was found, optimization over the noise space was used to find two

samples, S∗µ and S∗ρ . For this, the I-SOP method was used, as described in section 6.4.3.1.

For every candidate noise sample, the epistemic mean predictive value was found from the

GP model, and this is point was imputed. The GP θ correlation parameters were not re-

computed, but the covariance matrix A was, as well as those parts of the SOP initialization

step that depended on it. Then the SOP analysis was performed at D∗, and the epistemic

variance on the aleatory mean (σ2
µ or Var[M ]) was found. A genetic algorithm with a

population of 20 and a maximum of 100 generations was used, again with the built-in

MATLAB function ga. It was important in this case to provide the function with a random

population over the search area of interest (which was [-3,3] for each noise dimension), or

else the function would generate its own population over the range [0,1]. All other settings

for ga were used at their defaults.

The point S∗µ was selected which minimized the imputed σ2
µ. This point [D∗, S∗µ] was

then sampled, and added to the GP, which was completely re-fit.

The procedure was then repeated to find the sample [D∗, S∗ρ ] that minimized the epis-

temic variance of the pseudo-VaR, a term which is referred to as σ2
f (d) in Appendix A.

Once this point was found, it was sampled, the GP was completely re-fit, and the algorithm
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returned to selecting a new D∗.

9.1.7 Algorithm Details, Crossed (X) Arrays

For the crossed-array methods, X-MOSI and X-DoE, many of the algorithmic details were

similar to those used in the combined-array methods.

9.1.7.1 Warm-Start Design of Experiments

As with the combined-array methods, an initial LHS warm-start DoE was generated using

MATLAB’s built-in lhsdesign function, with the selection criteria set to “correlation” and

5 iterations. However, this design was only over the design variables.

9.1.7.2 Sampling in Noise Space, I-SOP

For every design, a separate sampling method was used over noise space. First, another

warm-start LHS DoE was used. For a given number of noise variables, this DoE was of

fixed size, pS + 7. Additionally, the same initial warm-start population was used for every

design, to make the noise sampling more consistent, and this initial warm-start population

was chosen with some care. Rather than using the built-in MATLAB lhsdesign function,

Keane and Forrester’s code for generating optimized LHS designs was used [?].

A GP model was fit to the noise space, and I-SOP was used to find successive S∗µ and

S∗ρ samples. These were sampled and added to the GP model, exactly as in the C-MOSI

procedure, with the same genetic algorithm procedure. Unlike in C-MOSI, however, the

design varibale settings did not change. I-SOP was continued until one of the following

conditions were met:

• The epistemic standard deviation of both the mean and pseudo-VaR were below 0.005

• The condition number of the GP covariance array A climbed above 1010

• Adding a new data point to the GP failed

At this point, the epistemic means of the aleatory mean and aleatory pseudo-VaR were

returned. The number of samples required to estimate both statistics was tracked.
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9.1.7.3 Fitting the Gaussian Process Model, Crossed (X) Arrays

Once I-SOP had been used to estimate aleatory mean and pseudo-VaR for all designs, two

separate GP models were fit, one to each. In the case of X-DoE, this was the last step. In

the case of X-MOSI, the two GP models were updated as additional designs were sampled.

9.1.7.4 Sampling in Design Space, X-MOSI

After the initial two GP models had been fit, one to mean and one to pseudo-VaR, additional

samples were selected using the expected Pareto improvement criteria. Emmerich et al.’s

formula was used, in this case without modification, as the results from the I-SOP step were

assumed to be free of epistemic uncertainty. This was an approximation; in reality, there

was still epistemic uncertainty present, even though it was low (less than 0.005 for both

mean and pseudo-VaR, when the Pareto frontier had a range of 1.0 over both). However,

there was no purpose to considering epistemic uncertainty when sampling in design space;

previously sampled designs were completely independent from any new samples, so no

further reduction in epistemic uncertainty was possible.

The point of greatest expected Pareto improvement was again found using the built-in

MATLAB ga function, again with a population of 20 for a maximum of 100 generations.

9.2 Experiment: Warm-Start Size

In the first experiment, the number of design and noise variables were both fixed at two.

The warm-start DoE sizes were swept from low to high. The lower limit on DoE size was set

by the ability to calculate Second-Order Probabilities, which required at least p+6 samples

(where p is the number of input dimensions). The upper limit was set as somewhat past

the point where ill-conditioning of the GP covariance matrix caused poor accuracy for the

warm-start DoEs.

9.2.1 Combined Array DoE and MOSI

A set of fifty C-MOSI runs were executed for the test problem with two design and two

noise variables. The progression of their model errors is shown in Figure 57, and their final

vs. initial sample sizes are shown in Figure 58.
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Figure 57: A set of C-MOSI paths, from initial warm-start DoEs (+) to the point of
minimum error (�). Past about 150 to 200 samples, ill-conditioning effects take hold. Prior
to that, both the endpoints and paths of the C-MOSI runs tend to dominate the DoE
samples in terms of error and number of samples. Several of the C-MOSI runs do degrade
in accuracy initially before beginning to improve.
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Figure 58: The initial and final sample sizes for the same set of runs as is shown in 57.
Dark circles achieved a target RMSE of 0.01 or below, while white circles did not. There is
a significant amount of randomness as to whether the runs reached the target or not, but
there does not seem to be an “optimum” warm-start size other than the minimum allowable.

In 57, runs are shown in terms of number of samples and RMSE. Warm-start DoEs are

shown as ’+’ markers, and the progression of error with samples is shown as a path. The

square markers represent the point in the run of minimum RMSE. Note at the smallest

warm-start size, the error increased for a few samples before decreasing. This effect will be

more pronounced for higher-dimensional problems, and will be discussed in a later section.

Note also that above about 200 samples, C-MOSI began to do almost as poorly as C-DoE,

and above about 300 samples, both the DoE and MOSI methods performed quite poorly.

This was due to the conditioning problems discussed earlier.

In the same figure, the initial DoE-based models and the final MOSI models can be

viewed as separate populations, in terms of their number of samples and RMSE. Over all

sample sizes, the MOSI method results in lower RMSE, with a small amount of overlap.

Thus, at least in this test case, C-MOSI is usually (though not always) more efficient than

C-DoE.

This provides a partial answer to Research Question #3:
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Between Combined-array Design of Experiments (C-DoE) and Combined-array Multi-

Objective Expected Improvement (C-MOSI), for the scalable test problem with 2 design

and 2 noise variables, C-MOSI is usually more efficient.

In Figure 58, it has been assumed that the designer had a target RMSE of 0.01. For cases

that reached the target (dark circles), the vertical axis represents the number of samples

required. In cases that did not reach an RMSE of 0.01 (white circles), the vertical axis

represents the number of samples when minimum error was reached. From this figure, it

should be possible to determine the optimum warm-start size, as was supposed in Figure 55

from the beginning of this chapter. Perhaps surprisingly, the optimum appears to occur

at the minimum warm-start size. Even with an initial DoE with only 10 samples, the C-

MOSI algorithm was able to efficiently model the true Pareto frontier. Note that Sobester

et al. found that optimal warm-start size was problem-dependent, and in their test cases

the optimal warm-start size was occasionally larger than the minimum.

9.2.1.1 A Stopping Criteria

Due to the ill-conditioning problems discussed previously, if the C-MOSI method is run long

enough, the error will eventually rise. The onset of this error rise is relatively sudden, and

if left to run the MOSI method will quickly end up performing more poorly than a DoE

method with a comparable number of samples. In these tests, the point of minimum error

or a target error is used, but in practice error is not known exogenously. It becomes a very

real practical concern to determine at which point the run should be stopped. Fortunately,

as true error rises, the epistemic uncertainty estimate also begins to rise. Similar to the

RMSE measure, a measure of total epistemic uncertainty can be adopted, among the designs
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thought to be on the frontier:

σtotal =

√
1

2
(σ2
µ + σ2

pVaR) (131)
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Where here σ2
µ and σ2

pVaR refer to the total epistemic variance, and i indexes along the NP

designs currently thought to make up the Pareto set P . The ranges Rµ and RpVaR are, as

before, taken to be the ranges of the true Pareto set, and for this test problem are both 1.0.

Figure 59 shows how σtotal predicts RMSE. For lower numbers of samples (N < 100),

it is a very good predictor, with an R2 = 0.9. After the ill-conditioning problems arise,

σtotal tends to over-predict the RMSE. It is unsurprising that the model’s prediction of

its own error becomes less accurate as the model itself becomes less accurate. What is

perhaps surprising is that the model predicts an increase in error at all. That is does could

be considered more a numerical artifact than anything. The epistemic variance terms are

of higher order than the expectation terms, and are constrained to be positive. Numerical

noise will tend to push them larger, and will change them faster than the expectation terms.

Thus, it is not that the model is “correctly” predicting that its error is higher, it is simply

that the errors in the model cause the estimates of the error to diverge... and this divergence

will tend to be positive.

Figure 60 shows a scatter plot of when these two metrics are minimized, in terms of

number of samples. The x-axis shows the number of samples where the minimum RMSE

occurred, and the y-axis shows the number of samples where the minimum σtotal occurred.

The two appear to be in reasonable agreement, though obviously not in perfect agreement.

Points below the line represent runs that would be stopped early with the σtotal criteria,

whereas points above the line would be stopped late. The criteria appears to lead to early

stopping more often than late stopping.

In Figure 61, the RMSE vs. samples plot of Figure 57 has been re-plotted, this time

using the MOSI cases with lowest epistemic uncertainty, rather than lowest true error. The
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Figure 59: RMSE as predicted by σtotal. Colors correspond to number of samples, from
low blue to high red. σtotal appears to be a very good predictor before the model becomes
ill-conditioned (R2 = 0.9), but is biased high over the whole dataset. One point in the
graph represents one sample. All C-MOSI runs from this experiment are plotted together.

Figure 60: Number of samples to reach min sigmatotal vs. samples to reach min RMSE.
The two are strongly, though not perfectly, correlated.
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Figure 61: Re-plot of Figure 57, but with runs stopping at point of minimum σtotal rather
than minimum RMSE. The C-MOSI runs still dominate the DoE runs, though no longer
by as much.
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C-MOSI runs still dominate the C-DoE runs, though not by nearly as much. The point when

σtotal stops improving, then, is a workable stopping criteria, though it leaves something to

be desired.

9.2.2 Crossed Array DoE and MOSI

In a crossed-array method, there are two separate arrays, one for the noise space and one

for the design space. An “inner” array is made in design space. For every design, a separate

“outer” array in noise space is used to determine the mean and value-at-risk. The sizing of

these arrays were investigated separately at first.

9.2.2.1 Noise Array Warm-start Size

The noise space can be sampled adaptively using the same method as was used to select

samples in noise space in the combined-array method, by imputing candidate points and

finding the sample that gives the greatest most-likely reduction in epistemic uncertainty

(the I-SOP method described in Chapter 6). Again, this requires a warm-start DoE, this

time only over noise space, and this warm-start DoE can consist of any fraction of the final

set of samples. A sweep of noise space warm-start size was performed for one single design

(D = (0.5, 0.5)), and the results are shown in Figure 62. In this case, RMSE was measured

as simply:

RMSE =

√
1

2
((E[µ]− µtrue)2 + (E[pVaR]− pVaRtrue)

2) (134)

Where again pVaR is the pseudo-value-at-risk (µ+c·σ), and the expected values of statistics

are found by finding the second-order-probabilities analytically from a Gaussian Process

model.

A warm-start DoE was required to contain at least pS + 6 = 8 samples, because the

variance of the variance is un-defined with fewer samples. At least for the (admittedly

low-dimensional) case of 2 noise variables, using adaptive sampling did not appear to offer

much advantage over a fixed DoE. For a target RMSE of 0.007, a warm-start of only 10

samples was sufficient without any further sampling.

However, since true error is well-predicted by second-order probabilities (as shown in

151



www.manaraa.com

Figure 62: Imputation-based Crossed-array Second Order Probability sampling in noise
space (X-I-SOP). This is only a two-dimensional space, and ill-conditioning leads to inac-
curacy after only 20 or so samples. Up until that point, additional DoE and I-SOP samples
seem to improve the accuracy by about the same amount.
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the previous section), using I-SOP provides the opportunity to refine a model, if the initial

DoE is estimated to not be sufficiently accurate. In economic terms, I-SOP provides value

by providing an option to refine the model. This means that the designer does not need to

spend more samples than necessary at any given design, and in the end this could lead to

greater efficiency. In practice, it was found that using a fixed noise DoE rather than I-SOP

did not improve the initial accuracy of the model (see Figure 63), but that it did result

in occasional instances of very inaccurate statistics at individual designs. Since the design-

space surrogate assumed perfect accuracy in the noise-space models, this meant that from

then on the model was “cursed” with a bad data point, and could never improve beyond a

certain level of accuracy. This is actually a fundamental issue with combining crossed arrays

and adaptive sampling. It was addressed by Kumar [67] through the use of GP models with

a “nugget” that allow for non-zero uncertainty at sampled data points. If this approach

were adopted, the sub-space models could be saved and periodically re-sampled to improve

their accuracy, at the expense of slightly higher overhead and storage requirements.

For the next test, the noise subspace warm-start size was set at the minimum, and

adaptive sampling was used to find the mean and value-at-risk for every design.

9.2.2.2 Design Array Warm-start Size

The effects of varying warm-start size of the design-space surrogate were then investigated.

A Latin Hypercube DoE was constructed in design space. At every design point, another

Latin Hypercube of 9 points was created in noise space, and adaptively sampled until

epistemic uncertainty in both mean and value-at-risk fell below 0.005. Note that at this

point, this was a hybrid method, combining adaptive sampling in noise space with a fixed

DoE in design space.

Once the mean and VaR had been estimated to satisfactory accuracy at all designs, two

GP surrogates were fit, one to mean and one to VaR. These were used in combination with

Emmerich et al.’s hypervolume-based MOSI method to select a new design. This design

was then sampled in noise space until the accuracy of the mean and VaR were acceptable,

and the process was repeated.
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Figure 63: A set of X-MOSI paths. The triangles represent warm-start populations, and
the gray paths are X-MOSI progressions, ending in diamonds. The triangles represent
design-space X-DoEs, but in noise space they use X-I-SOP. The ’x’s represent pure X-DoEs.
X-MOSI sampling in design space dominates design space DoEs.

Plots of the paths taken by individual runs of the method are shown in Figure 63. The

triangles represent the initial warm-start X-Doe (hybrid method, adaptive I-SOP sampling

on noise space), and the gray lines represent X-MOSI sampling paths from those warm-

start DoEs to the point of maximum accuracy. As with C-MOSI, the X-MOSI paths and

endpoints dominate the X-DoE runs in terms of efficiency. The ’+’ symbols represent a

totally separate set of X-DoE-only runs, which do not seem to differ much from the warm-

start X-DoE’s with I-SOP.

A plot of initial and final sample size is shown in Figure 64. As with C-MOSI, the

optimal warm-start size appears to be at the lower limit of the range. This confirms that

for this low-dimensional design problem at least, X-MOSI is more efficient than X-DoE.
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Figure 64: X-MOSI initial and final sample sizes. Solid circles achieved an RMSE below
0.01, white circles did not. The optimum warm-start size, as with C-MOSI, appears to be
at the lower limit, confirming that X-MOSI is more efficient than X-DoE.

9.2.3 Comparing All Four Methods

In Figure 65, all four methods are shown. This graph is similar to the previous “path”

charts, but the paths have been omitted and each method has been presented simply as its

own population. Rather than exhibiting clear dominance, a frontier emerges in the trade

between error and samples. Keep in mind that even though paths are not shown, the left-

most paths of the MOSI methods do dominate the DoE methods, as seen in previous plots.

Though the DoE methods are dominated by the MOSI methods, between the two MOSI

methods there is a trade: C-MOSI dominates for low numbers of samples, but for lower

error the C-MOSI method cannot compete with X-MOSI.

One of the objectives of this experiment was to answer the research question:

Research Question 3: Is there a design scenario where a combined array Multi-

Objective Statistical Improvement method (C-MOSI) out-performs both crossed-array

and design of experiments methods in terms of efficiency?

This cannot be definitively answered yet. At low numbers of samples, and higher allowed
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Figure 65: All four methods on the same axes. The C-MOSI and X-MOSI methods both
dominate, C-MOSI for lower numbers of samples but higher error, and X-MOSI for lower
error but more samples.

error, C-MOSI dominated; but for stricter accuracy requirements, X-MOSI was equally

“efficient” in the Pareto sense. More comparisons will be made in the next experiment.

9.3 Sensitivity to Problem Dimensionality

Two research questions involved the sensitivity of different method types to the dimension-

ality of the problem. They are reprinted here, along with the corresponding hypothesis, as

first stated in Chapter 5.

Research Question 1: For finding mean/risk Pareto frontiers, how does the relative

efficiency of combined and crossed arrays depend on the number of noise variables?

Hypothesis 1: As the number of noise variables increases, the efficiency of combined

array methods will suffer relative to the efficiency of crossed array methods.

Research Question 2: For finding mean/risk Pareto frontiers, how does the relative

efficiency of design of experiments and multi-objective statistical improvement change

with the number of design variables?
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Hypothesis 2: As the number of design variables increases, multi-objective statistical

improvement methods will become more efficient relative to a design of experiments.

These questions and hypothesis make reference to “efficiency”, which has so far been

imprecisely defined as the Pareto efficiency with regard to number of samples and model

accuracy. In Figure 65, the error along the Pareto frontier was plotted for the four methods

as a function of number of samples, with poorly conditioned models removed. In Figure 66,

the MOSI methods have been re-run ten times at their minimum warm-start size, and

their error progressions have been plotted alongside the previously-plotted DoE data. Each

population now represents the progression of error as samples are added for each method.

The data has been plotted on log-log axes, and each population appears linear, suggesting

a power relationship. Linear fits and their R2 values are shown. The points of intersection

between DoE and MOSI runs can be clearly seen; the data once again show the MOSI

methods to be more efficient, and these intersection points are a graphical representation

of the “crossover point”, where the MOSI method becomes more efficient. Note that this

is not the same as optimal warm-start size; all MOSI runs are run at the minimum warm

start size, but the C-MOSI runs get worse before they get better. For the crossed-array

methods, the crossover point appears to be immediate.

The linear fits shown in Figure 66 can be thought of as models for the expected RMSE

for each method as a function of sample size. In the next subsection, these models will be

refined and developed further. Then, in the following subsection, they will be used to test

the sensitivity of the different methods to the dimensionality of the problem.

9.3.1 Power Function Error Models

Since the test problem is known, there is an unusual opportunity not usually found in

statistical sampling problems. It is possible to quantify how inaccurate any sampling method

is expected to be, given a certain number of samples, by repeatedly running the method,

as has been done in the previous section.

To determine how problem dimensionality affects method performance, it will be useful
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Figure 66: Log-log plot of RMSE vs. samples for the four methods, with 2 design and 2
noise variables. Both MOSI methods have been run 10 times at the smallest warm-start
size. Data for DoEs is as in Figure 65. Dotted black lines are linear regressions, with R2

values shown in the legend. Ill-conditioned models have been removed.

to have a model for how accurate the method is expected to be for a given number of samples.

The previously-discussed Figure 66 suggested a power relationship for the predicted root

mean square error, which will be called R̂MSE:

log10(R̂MSE(N)) = a log10(N) + b (135)

log10(R̂MSE(N)) = −α log10(N) + log10(R̂MSEN=1) (136)

R̂MSE(N) = R̂MSEN=1N
−α (137)

where N is the number of samples. The coefficient α is a measure of how quickly the

method is able to reduce error, and since the methods will be expected to reduce error, a

negative sign is added to the exponent so that the coefficient will be positive, with higher

values corresponding to more efficient methods. The term R̂MSEN=1 is the predicted RMSE

when the method is run for only a single sample.

However, it is not necessarily possible to run a method for a single sample. Each

method has some minimum number of samples below which the method cannot be run.

This limit may be due to the requirements for calculating the aleatory statistics, or it may

be structural. What’s more, this value of R̂MSEN=1 may be very large, over 10100. This is
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fine as long as it is kept in logarithm form as the intercept of the linear regression model,

b = log10(R̂MSEN=1), but it causes numerical problems if it is ever calculated directly. To

remedy this, revised expressions will be used, of the form:

R̂MSE(N) =

(
0.1

N̂−α0.1

)
N−α (138)

where now N̂0.1 is the number of samples where the method is predicted to have an RMSE

of 0.1. From Figure 66, it can be seen that all four methods at some point pass through an

RMSE of 0.1, so it is always within the regression range, and what’s more it has a physical

meaning that is potentially useful. It will always have a reasonable value, and can be found

from the coefficients of the regression model:

N̂0.1 = 10( 1+b
α ) (139)

In the remainder of this subsection, still for a problem with pD = pS = 2, full er-

ror models R̂MSE(N) will be found for each method. These models will provide a more

complete quantification of method “efficiency”. Finally, they will be combined into a uni-

fied error model, which can be used to measure the sensitivity of the methods to problem

dimensionality and to answer Research Questions 1 and 2.

9.3.1.1 Combined-Array Error Models

As seen in Figure 66, the C-DoE and C-MOSI methods intersect at the low end of their

ranges, as would be expected, since the C-MOSI method relies on a C-DoE warm-start.

What’s more, the two methods seem to overlap in the nonlinear section where samples are

low. Both methods begin at the same error level for the minimum warm-start size, and both

increase in error briefly before quickly dropping in error. Whether this is a fundamental

property of combined-array methods or simply a property of the test problem is unclear.

The surrogates used in these experiments are Gaussian Process models with priors that

include a bias term and a linear term for each input dimension. Thus, pD+pS+1 degrees of

freedom are used in estimating the parameters in the prior. Another 5 degrees of freedom

are required for calculating second order probabilities, meaning that the minimum sample

size is Nmin = pD + pS + 1 + 5, or 10 for the case of pD = pS = 2.
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Figure 67: Combined-array error progression and error models, pD = pS = 2. In (a), only
ill-conditioned runs have been removed. The power fit is poor, because of the transient
behavior at low sample sizes, both for DoE and MOSI. In (b), all data with N < 20 have
been removed (shown in gray), and the fit has improved, though the transient is now not
captured at all.

However, because of the non-linear behavior for low numbers of samples, all models with

fewer than 20 samples were removed from the regression. Figure 67(a) shows the fit lines for

the two methods when only ill-conditioned runs have been removed, and (b) shows the fits

when all data with fewer than 20 samples have been removed. The R2 improves somewhat

(0.81 to 0.88 for C-MOSI, 0.73 to 0.89 for C-DoE), and it can be seen that the behavior after

the transient is better-captured. However, the method behavior at and before the transient

is not captured at all. Since the primary concern is the effectiveness of the methods for

realistic numbers of samples, this is acceptable. Values of α and N̂0.1 will be shown later in

the section, along with those for all methods and problem sizes.

9.3.1.2 Crossed-Array Error Models

For crossed-array methods, the fit was not as challenging. Ill-conditioned runs were removed,

and the remaining data appeared linear in log-log space. The fits were reasonable, R2 = 0.83

for X-MOSI and R2 = 0.71 for X-DoE. The two fits intersected at N = 94 samples, which

was close to the smallest warm-start size of 106 for X-MOSI. Specific values for the regression
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Figure 68: Crossed-array error progression and power error models, pD = pS = 2. Ill-
conditioned models have been removed.

parameters will be presented in the next section for multiple problem sizes.

9.3.2 Experimental Design: Sensitivity to Problem Dimensionality

The methods were again run, three more sets of times, incrementing the number of both

design and noise variables by one. The very simple design with regard to numbers of

variables is shown in Figure 69. Ideally, the experiment would have extended over a much

wider range of problem sizes, but the experiments were constrained by available computer

budgets and the curse of dimensionality. Higher dimensional problems require more samples,

and Gaussian Process models can be expensive to regress and evaluate for large sample sizes.

The largest combined-array samples sizes seen here (9,000 samples in a single GP model for

pD = pS = 3) were already reaching the limit of practicability, as they took about half an

hour to regress and evaluate and consumed several Gigabytes of computer memory, even

with the GP simplifications referred to earlier in this chapter. Ironically, though the MOSI

methods required significant computational overhead to select subsequent samples, they

were computationally tractable for higher problem dimensionality since they required fewer

total samples, and were successfully used on problems of size pD = pS = 5. The comparison

is perhaps unfair, however, since DoE methods can be used without Bayesian surrogates
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and GP models were used here only for consistency.

Table 13 shows the number and types of runs used in the experiments, along with the

fit parameters. Figure 70 shows RMSE vs. samples plots for all four settings. The two

parameters of N̂0.1, and α together completely specify the error model. Together, they can

be considered a model for how “efficient” the method is in terms of providing information

about the Pareto frontier for a particular budget of samples. It is not complete to refer to

a single metric for efficiency. If the designer has a particular fixed budget of samples, then

RMSE could be used as a single metric; or, conversely, if the designer had a desired level of

accuracy, then required samples could be used as a single metric. However, in the absence

of such a requirement a Pareto notion of efficiency must be retained.

It may be reasonable, however, to assign more theoretical importance to the α term.

If one were to consider a purely hypothetical scenario where any of the methods could be

run for an infinite number of samples without ill-conditioning effects, and the goal was to

drive error to zero, in the long run the intercept term would not matter. From a sufficiently

“zoomed out” perspective, all four error models intersect somewhere in the region of the

graphs. For a sufficiently large number of samples, the most efficient method will be the

one with the largest α. In an actual design scenario, low-sample accuracy is very important,

and for this test none of the methods could reduce error much further than is shown on

the graphs. The discussion that follows will include both terms, but more emphasis will be

placed on α.

9.3.3 Unified Linear Error Model

In order to examine the effects of methods, arrays, and space dimensionality, the 16 models

above were replaced with a single regression model. The two non-numeric factors were

assigned dummy variables. XC represents choice of array type:

XC = −1 ⇒ crossed array (X) (140)

XC = 1 ⇒ combined array (C) (141)
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Table 13: Experimental Design and Regression Coefficients

X-DoE

pD pS # data Nmin Nmax α N̂0.1 R2

2 2 128 120 1,000 2.18 292.82 0.71
2 3 95 264 2,000 2.52 595.61 0.86
3 2 174 135 10,600 0.50 7333.79 0.61
3 3 173 297 23,800 0.56 12930.52 0.63

X-MOSI

pD pS # data Nmin Nmax α N̂0.1 R2

2 2 202 106 500 4.97 158.81 0.83
2 3 158 215 737 5.07 320.37 0.80
3 2 445 110 950 3.65 252.69 0.90
3 3 343 215 1475 3.47 490.44 0.91

C-DoE

pD pS # data N∗min Nmax α N̂0.1 R2

2 2 133 20 300 1.53 103.66 0.89
2 3 126 25 500 1.39 164.55 0.89
3 2 137 25 2000 0.74 619.02 0.83
3 3 112 34 9000 0.69 818.92 0.86

C-MOSI

pD pS # data N∗min Nmax α N̂0.1 R2

2 2 389 20 125 3.00 41.22 0.88
2 3 717 25 206 2.41 56.46 0.87
3 2 486 25 144 2.44 56.84 0.87
3 3 819 34 235 2.56 71.82 0.88

For combined arrays, N∗min is larger than the actual minimum sample size, as small samples
have been excluded to improve fits and focus on the non-transient region.
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Figure 69: Experimental Design, settings for number of design variables (pD) and noise
variables (pS).

and DM represents type of method:

DM = −1 ⇒ design of experiments (DoE) (142)

DM = 1 ⇒ multi-objective statistical improvement (MOSI) (143)

The power model format was maintained, but each of the two linear coefficients for the

transformed equation was assumed to be a sum of linear contributions from each of the

variables and interactions:

log10(RMSE) =(b0 + bXC ·XC + bDM ·DM + bpD · pD + bpS · pS

+ b(XC×DM)(XC ×DM) + · · ·+ b(pD×pS)(pD × pS))

−(a0 + aXC ·XC + aDM ·DM + apD · pD + apS · pS

+ a(XC×DM)(XC ×DM) + · · ·+ a(pD×pS)(pD × pS)) · log10N (144)

All two-factor interactions were included, but no square terms, since only a two-level design

was used. For convenience, the statistical package JMP was used for regression and effects

testing. A list of all terms, their coefficients, their significance, and their confidence intervals

are shown in Table 14. The R2 for the whole model was 0.88, comparable to the goodness

of fits of the 16 individual error models.
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Figure 70: Regression data for RMSE vs. samples for four different settings of design
(pD) and noise (pS) variables. All four methods are shown in each plot, with regression
lines shown in black. The early transient data has been removed from the combined-array
methods, and is shown in gray. Purely from visual inspection, it appears that the DoE
methods are more sensitive than MOSI methods to number of design variables (top vs.
bottom), and the crossed-array methods appear more sensitive than the combined-array
methods. From inspection alone, the effects of increasing the number of noise variables (left
vs. right) seem to be primarily to shift the graphs to the right.

165



www.manaraa.com

Table 14: Linear Regression Terms and Regression Results

Coefficient Term Estim. Std. Lower Upper F Ratio P (> F )
Error 95% 95%

b0 Intercept 7.440 0.636 6.193 8.687 0.E+00
bXC XC -3.085 0.245 -3.565 -2.605 158.593 9.E-36
bDM DM 2.011 0.172 1.673 2.349 136.254 5.E-31
bpD pD -1.496 0.220 -1.927 -1.065 46.271 1.E-11
bpS pS 0.424 0.232 -0.030 0.878 3.351 0.0672
b(XC×DM) XC ·DM -0.889 0.033 -0.955 -0.824 704.713 1.E-144

b(pD×XC) pD ·XC 1.078 0.076 0.930 1.226 203.021 4.E-45

b(pS×XC) pS ·XC -0.563 0.063 -0.686 -0.440 80.342 4.E-19

b(pD×DM) pD ·DM 0.225 0.052 0.123 0.327 18.611 2.E-05

b(pS×DM) pS ·DM -0.200 0.045 -0.288 -0.112 19.995 8.E-06

b(pD×pS) pD · pS -0.078 0.079 -0.232 0.076 0.983 0.3215

a0 − log10(N) 5.858 0.296 -6.438 -5.278 392.075 8.E-84
aXC XC · (−log10(N)) -1.339 0.099 1.144 1.533 181.365 1.E-40
aDM DM · (−log10(N)) 1.409 0.076 -1.557 -1.260 345.140 2.E-74
apD pD · (−log10(N)) -1.259 0.102 1.060 1.459 153.275 1.E-34
apS pS · (−log10(N)) -0.469 0.106 0.260 0.678 19.416 1.E-05
a(XC×DM) XC ·DM · (−log10(N)) -0.248 0.013 0.222 0.274 353.437 5.E-76

a(pD×XC) pD ·XC · (−log10(N)) 0.472 0.030 -0.531 -0.412 241.892 3.E-53

a(pS×XC) pS ·XC · (−log10(N)) -0.127 0.024 0.079 0.174 27.632 2.E-07

a(pD×DM) pD ·DM · (−log10(N)) 0.079 0.022 -0.122 -0.035 12.264 0.0005

a(pS×DM) pS ·DM · (−log10(N)) -0.198 0.019 0.161 0.234 112.839 5.E-26

a(pD×pS) pD · pS · (−log10(N)) 0.122 0.036 -0.193 -0.051 11.354 0.0008

The terms α and N̂0.1 can now be re-defined in terms of the unified linear model:

α =

11∑
i=1

ai · Zi (145)

N̂0.1 = 10

(
1+

∑11
i=1 bi·Zi
α

)
(146)

where the Zis are the control variables (XC, pD, etc.).

9.3.4 Sensitivity to Problem Dimensionality, Results Analysis

The results presented in the previous subsection can be used to infer about the relative

effects of problem dimensionality on method efficiency, and to answer Research Questions

1 and 2, re-printed here:
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Research Question 1: For finding mean/risk Pareto frontiers, how does the relative

efficiency of combined and crossed arrays depend on the number of noise variables?

Hypothesis 1: As the number of noise variables increases, the efficiency of combined

array methods will suffer relative to the efficiency of crossed array methods.

Research Question 2: For finding mean/risk Pareto frontiers, how does the relative

efficiency of design of experiments and multi-objective statistical improvement change

with the number of design variables?

Hypothesis 2: As the number of design variables increases, multi-objective statistical

improvement methods will become more efficient relative to a design of experiments.

9.3.4.1 Re-defining Research Question 1 in Terms of Interactions

In a previous subsection, efficiency was defined in terms of the error model, R̂MSE(N), and

is described by a sample sensitivity parameter α and an intercept term N̂0.1. Question 1

pertains to an interaction between number of noise variables pS and the array choice, crossed

(X) or combined (C), and the effect on the error model. When a unified linear model is

adopted, with pS and array choice as factors, then this question can be re-phrased in terms

of the linear model:

Research Question 1 (re-phrased):

(a) What is the interaction effect pS ×XC on α (term a(pS×XC))?

(b) Is there a cross-over interaction effect between pS and XC on N̂0.1?

Hypothesis 1 (re-phrased):

(a) The effect pS ×XC on α is negative

(b) If there is a cross-over interaction between pS and XC, it does not cause C methods

to improve over X methods.
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where XC is the name given to a dummy variable that represents array choice, negative

for crossed arrays and positive for combined arrays.

Hypothesis 1(a) states that as the array type goes from crossed (X) to combined (C),

the value of α will decrease more at high values of pS than it will at low values of pS .

Figure 71 shows two interaction plots. The first shows the effects on α of interaction

between pS and XC. The X and C lines are not perfectly parallel, indicating an interaction,

but the effect does not appear severe, and the significance of the result is not obvious.

One would expect that the crossed-array line (X) would be essentially level. In a crossed-

array method, the outer-array samples in each iteration can be thought of as a sort of

“overhead” cost that should depend on the noise subspace and nothing else. In a power

model, multiplying the number of samples by a constant factor does not change the exponent

α. However, in the tests, a fixed noise array was used for all X-DoE runs, and it is possible

that the array for pS = 2 was better or worse than for pS = 3. That α improves at pS = 3

is an indication that the effect may simply be due to a better quality noise-space DoE at

that setting. For combined-arrays, on the other hand, α appears to decline slightly. This

term in the unified model is negative, as predicted by Hypothesis 1(a): a(pS×XC) = −0.127,

and is significant at a p-value of less than 0.0001 (see Table 14 for linear regression results).

Hypothesis 1(b) does not make as strong a prediction as does Hypothesis 1(a). Since

the term N̂0.1 is not a term in the linear model, there is no interaction term that captures

the effect (pS×XC) on N̂0.1. It is not meaningful to say that N̂0.1 changes “more” or “less”

for X or C models, because the changes will not be linear. The only phenomenon which can

be meaningfully called in “interaction” is a crossover, for example if X is lower than C at

pS = 2 but higher at pS = 3. So the only meaningful hypothesis with regard to the effects

on N̂0.1 is that if such a cross-over does occur, it result in C methods getting worse than X

methods at higher values pS , and not the reverse.

Part (c) shows the effects of pS on N̂0.1. Since N̂0.1 is not a linear effect, it is not even

really proper to average out the other effects. Instead, every setting of the control variables

should be looked at individually, and examined for cross-over effects. Instead, (c) shows an

approximation of the effects of pS on N̂0.1. For the plot, the logarithm of N̂0.1 was taken
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Figure 71: Interactions between noise dimensionality (pS) and array type (crossed X or
combined C). In (a), combined arrays (C) suffer greater degradation (decrease) in α from
increased problem dimensionality than do crossed arrays (X). In (b), the intercept term b
also shows interaction effects. Plot (c) shows that N̂0.1 degrades for both X and C methods.
Note that (c) cannot properly be called an interaction plot because the y-axis is not a term
in the linear model, and the values have been “illegally” averaged in log-space even though
the effects may not be log linear; it is provided only to show gross effects, and no meaning
should be ascribed to whether the lines are parallel or not.
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for every combination of control variable settings, and these were averaged as if they were

linear effects. For both X and C, N̂0.1 gets worse with increasing noise dimensionality, and

is worse for X at both high and low values of pS . As long as this holds true for all variable

settings (and Figure 70 indicates that it does), there is no risk of a cross-over. If there is

no cross-over, Hypothesis 1(b) is supported trivially.

Part (b) of the figure shows an interaction plot for the intercept, b = log10(R̂MSEN=1).

This is a true interaction plot, since b is a linear effect, but it is not physically meaningful

since the method cannot be run for a single sample and thus N = 1 is outside the regression

range. There appears to be a strong interaction, but any meaning of the effect must be

derived from its influence on physically meaningful parameters.

Of the two requirements for Hypothesis 1, then, both (a) and (b) are supported. It

appears that there are interaction effects between pS and XC on α, that cause combined-

array methods to suffer more than crossed-array methods from increases in noise space

dimensionality. Any interaction effects on N̂0.1 cannot be readily interpreted with the

current linear effects model.

9.3.4.2 Re-defining Research Question 2 in Terms of Interactions

Research Question and Hypothesis 2 can also be re-phrased as interaction, this time between

number of design variables and method choice (DoE or MOSI):

Research Question 2 (re-phrased):

(a) What is the interaction effect pD ×DM on α (term a(pD×DM))?

(b) Is there a cross-over interaction effect between pD and DM on N̂0.1?

Hypothesis 2 (re-phrased):

(a) The effect pD ×DM on α is positive

(b) If there is a cross-over interaction between pD and DM, it does not cause DoE

methods to improve over MOSI methods.
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where DM is a dummy variable representing sampling method, negative for DoE.

Figure 72(a) shows the effects on α of interaction between pD and DM. Both meth-

ods suffer with increasing design space dimensionality. Further, the lines are not parallel,

indicating an interaction, and the DoE line suffers more than the MOSI line, supporting

Hypothesis 2. In the unified regression model, this effect has an estimate a(pD×DM) = 0.07,

and the term was significant at a p-value of 0.0005. This was one of the less significant

effects.

Hypothesis 2(b), like Hypothesis 1(b), is weaker than (a). Again, N̂0.1 is not a linear

effect in the regression model, so it is not possible to draw conclusions directly from a

particular coefficient. Instead, one would need to examine slices at every other combination

of control variable settings to check for cross-over. There is no danger of cross-over, however,

as long as MOSI methods always have lower N̂0.1 than their neighboring DoE method (which

can be verified by looking at Figure 70). Hypothesis 2(b), then, is supported.

Plot (b) shows the interaction effect on the intercept term, b = log10(R̂MSEN=1). There

appears to be an interaction, but since none of the methods can be run for a single sample,

this effect will only be seen through indirect influence on other physical parameters.

Both Hypothesis 2 (a) and (b) are supported by the data. It appears that MOSI

methods suffer less from increasing design space dimensionality than DoE methods. The

possible reason which led to this hypothesis in the first place was that the Pareto frontier

is a smaller-dimensional subspace of the total design space, and the dimensionality of this

subspace is purely a function of the number of objectives. As the design dimensionality

is increased, the hypervolume (“tube”) of designs around the frontier becomes a smaller

fraction of the total space, so adaptive sampling methods that concentrate their efforts

around this frontier were expected to suffer less than DoE methods which must model the

response globally. Adaptively sampling with a method like EI helps alleviate the “curse of

dimensionality”, as does any optimization method.
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Figure 72: Interactions between design space dimensionality (pD) and method type (DoE
or MOSI). In (a), DoE methods suffer greater degradation to α than do MOSI methods as
the number of design variables is increased. In (b), the interaction effect on the intercept

term (b = log10(R̂MSEN=1)) is also positive, though the coefficient b is not physically very
meaningful and appears to “improve”. In (c), the more meaningful value of N̂0.1 is plotted,
and both methods are seen to actually degrade. Plot (c) is not a true interaction plot, since
log10(N̂0.1) is not a linear effect of the model; its values have been “illegally” averaged in log
space to show gross effects, even though it may not be log-linear, and no meaning should
be ascribed to whether or not the lines are parallel.
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9.3.4.3 Other Notable Interactions

Of all the interactions tested, the previously discussed (pS × XC) and (pD × DM) were

the fourth and fifth most significant, respectively. The three most significant interactions

were (XC ×DM), (pD ×XC), and (pS ×DM), ranking by their effects on α. It is worth

discussing these three, as they give further insight into the method behavior.

Figure 73 shows the interaction between array type (crossed X or combined C) and

method type (DoE or MOSI). In (a), the α term is higher for MOSI methods than for DoE

methods. Going from crossed to combined arrays, α declines, and this effect is stronger for

MOSI methods. The intercept term b also shows an interaction, where the effects of going

from crossed to combined arrays are stronger for MOSI methods than for DoEs.

The benefit of combined arrays is seen in (c), where N̂0.1 is lower for combined arrays.

This brings back an earlier discussion about the non-domination of combined vs. crossed

arrays. Though C-MOSI can provide a reasonable RMSE at a low number of samples, X-

MOSI reduces error faster as more samples are added (and can reduce error further without

hitting ill-conditioning). If no ill-conditioning effects were encountered, and the effects here

could be extrapolated, eventually X-MOSI would become more efficient than C-MOSI for

high numbers of samples. However, this is extrapolation into a region where experience has

shown the relationships do not hold, so no real conclusions can be drawn from it.

Figure 74 shows the interaction between design space dimensionality and array type

(crossed X or combined C). In (a), both array types experience degraded α’s as the design

dimension is increased, but crossed arrays are more sensitive than combined arrays. Plot

(b) shows the sensitivity of the intercept term b = log10(R̂MSEN=1), where crossed arrays

are also more sensitive to design dimensionality. In (c), the degradation effect is also

seen in N̂0.1. The take-away is that using combined arrays helps alleviate the curse of

dimensionality somewhat, relative to crossed arrays. This is the basis for the entire field of

Design of Experiments, where a careful design is used rather than multidimensional grids.

Figure 75 shows the interaction between number of noise variables pS and sampling

approach (DoE or MOSI). In (a), neither approach appears strongly influenced by number

of noise variables; however, while the MOSI methods experience some expected degradation,
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Figure 73: Interaction between array type and method type (XS × DM). Plots (a) and
(b) are interaction plots for the terms α and b, while (c) shows the effects on N̂0.1 and is
instructive but cannot properly be considered an interaction plot.

Figure 74: Interaction between number of noise variables pD and array type X or C. There
is an interaction effect on α, where crossed arrays are more sensitive to design space dimen-
sionality than combined arrays. Plot (b) shows an interaction in the intercept term b, and
plot (c) shows that N̂0.1 degrades for both combined and crossed arrays. Plot (c) is not a
true interaction plot because log10(N̂0.1) is not a linear effect of the model, so no meaning
should be ascribed to whether the lines are parallel.

174



www.manaraa.com

Figure 75: Interaction between number of noise variables pS and sampling approach (DoE
or MOSI). In (a), α degrades with increasing pS for MOSI methods, as might be expected.
However, it appears to improve for DoE methods. This is puzzling and left unexplained.
The intercept term does not appear to show significant interaction effects in (b).

the DoE methods are seen to actually improve as noise dimensionality increases. This is a

puzzling result, and no explanation will be offered, though one wonders if it is simply bias

or a shortcoming of the unified model.

9.3.4.4 Broad Interpretation

After staring at so many interaction plots, it is now possible to make several generalizing

statements.

• Crossed (X) arrays are more sensitive to design dimensionality than Combined (C)

arrays

but they are less sensitive to noise dimensionality

• DoE sampling is more sensitive to design dimensionality than MOSI sampling

but it is less sensitive to noise dimensionality

These statements should be taken with the caveats that this is but one small experiment,

that the results may not be generalizable, and that in the above statements the noise space-

based affects may be biased by noise array methodology in the crossed-array methods.
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9.3.4.5 A Partial Answer to Research Question 3

Recall Research Question 3:

Research Question 3: Is there a design scenario where a combined array Multi-

Objective Statistical Improvement method out-performs both crossed-array and design

of experiments methods in terms of efficiency?

It is not possible to give a definitive answer to this, partly because it is not possible to

give a single metric for “efficiency”. It is possible to give a qualified answer, however:

• If the sample budget is below a certain threshold, under certain design scenarios,

C-MOSI will be more efficient than C-DoE, X-MOSI, and X-DoE.

• If the required accuracy level is above a certain threshold, under certain design

scenarios, C-MOSI will be unable to reduce error sufficiently, and X-MOSI will be

more efficient than the other three methods.

The first statement pertains to a fixed sample size, and efficiency measured as RMSE

along the true Pareto frontier. The second statement pertains to a target RMSE, and

efficiency measured as the number of samples. Together, the statements reflect that in the

tests performed, C-MOSI and X-MOSI together formed an efficient frontier, C-MOSI at

the low-sample end, and X-MOSI at the low-error end, as can be see in every quadrant of

Figure 70.

9.3.4.6 Caveats and Qualifications

Though care has been taken to qualify results and interpretations as they have been pre-

sented, it is perhaps worthwhile to collect the important caveats and qualifications related

to this experiment in one place.

First and foremost, all results in this chapter are for a single scalable test function

that has low roughness, a nearly linear noise space, and little interaction between the
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design and noise spaces. The tests were run only over a small range of design and noise

variable sizes, between 2 and 3, which are very small numbers relative to any actual likely

design problems. There are many other problem characteristics that will change, including

roughness, linearity, interactions, and a host of other characteristics that perhaps don’t even

have names but would be lumped under the non-specific term “shape”. The observations

here might hold under other conditions, but there is no guarantee of that nor any way to

use language more precise than to say it “seems likely”.

Some of the specific implementation choices from this experiment likely affected the

outcome. The use of fixed arrays in noise space for the X-DoE (and X-MOSI warm-starts)

introduced an element that did not “scale” precisely with noise dimensionality. It is possible

that the choice introduced a bias. Using random noise arrays might have resulted in less

bias, but might also have been less fair to the crossed array methods since less effort would

have been spent optimizing each noise array.

The choice of Gaussian Process models also significantly affected the results, since ill-

conditioning of the covariance array is a problem unique to them. Other options could have

included treed Gaussian Processes [47] or Relevance Vector Machines [110].

The hypotheses were re-phrased in terms of interaction effects, which seems like a good

way to quantify them, but is not the only possible choice. The choice of a linear effects model

was somewhat arbitrary, as was the choice of transformed sample and RMSE variables. The

only justification is that the final model had good fit, at least over the regression data (which

had notable exclusions).

9.4 Summary of Experimental Results

In this chapter, several experiments explored the behavior of four methods: two different

sampling approaches, Design of Experiments (DoE) and Multi-Objective Statistical Im-

provement or (MOSI); and two different array types, Crossed (X) and Combined or (C).

All four methods (X-DoE, X-MOSI, C-DoE, and C-MOSI) were evaluated in terms of

their final Gaussian Process surrogate models, and how accurately they could predict the

mean and Value-at-Risk (percentile) along a known “true” Pareto frontier. The error in the
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mean and VaR terms was combined into a single Root Mean Square Error metric (RMSE).

First, the combined-array methods (C-DoE and C-MOSI) were treated as a continuum.

Each execution starts at a warm-start C-DoE of a particular size, and ends after a certain

number of C-MOSI iterations. By doing a sweep on C-DoE warm-start size, and running C-

MOSI on each until the model accuracy stopped improving, the optimal warm-start size was

found. For this test case, a threshold RMSE could be reached with the fewest samples by

starting with the smallest possible warm-start. This also showed that for the test problem

with dimensionality pD = pS = 2, C-MOSI was more efficient than C-DoE.

In most tests, C-MOSI was run until the true error began to climb due to ill-conditioning

effects. Since this point would not be known in practice, a stopping criteria based on

epistemic Bayesian uncertainty was implemented, and shown to be workable.

Next, the crossed-array methods (X-DoE and X-MOSI) were also treated as a contin-

uum, with similar results. X-MOSI was found to be more efficient than X-DoE in terms

of accuracy and samples. Between C-MOSI and X-MOSI, however, it was not possible to

pick a dominant method, because while C-MOSI dominated at low numbers of samples, it

was incapable of reaching the high level of accuracy produced by X-MOSI for much larger

sample budgets.

In the second set of experiments, the error progressions of the four methods were mod-

eled as a function of number of samples. With the exception of ill-conditioned models and

some transient effects for combined arrays with small sample sizes, a power law was found

to represent the data well. Number of design dimensions and number of noise dimensions

were treated as sensitivity variables, and were both varied from 2 to 3. A total of 16 error

models were developed:

2 array types

x 2 sampling approaches

x 2 noise space dimensionalities

x 2 design space dimensionalities

A unified linear effects model was then developed to simultaneously capture the effects of
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samples, methodological choices, and space dimensionalities. The model had fit comparable

to the individual error models, with an R2 = 0.88. Research Questions 1 and 2 pertained

to the sensitivities of the different methods to problem dimensionality, and they were re-

phrased as questions about the interactions in the unified error model. Both hypotheses

were supported by the data.
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CHAPTER X

DEMONSTRATING C-MOSI ON AN ELECTRIC POWER

PORTFOLIO TEST PROBLEM

Though to this point C-MOSI has been demonstrated and tested alongside three other

methods, the question remains whether it can be used on a problem more complex than the

analytic scalable test function. To that end, the method was tested on the electric power

portfolio simulation model described in Chapter 7.

10.1 Electric Power Portfolio Test Problem

The test problem involved the simulation model described in Chapter 7. In order to repre-

sent an elecric power utility test case, the test problem had to present a mean/risk Pareto

frontier similar to the ones found in utility planning documents. Two such frontiers from

the PacifiCorp IRP are shown in Figure 76, previously shown in Chapter 2.

Figure 76: PacifiCorp’s frontier plots for two carbon price scenarios. The IRP document
contains additional plots for other carbon scenarios [90]

The most important characteristic is simply that there is a frontier. Depending on

the assumptions made about costs and performance, it is possible that a single portfolio

have both the lowest mean cost and lowest cost risk, or that the frontier be so small as
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Table 15: Capital Cost Assumptions For Demonstration Case

Equipment Annualized Capital Cost Units

Wind Turbines 412,500 $/MW
Photovoltaic Arrays 300,000 $/MW
Energy Storage 65,000 $/MWh
Natural Gas Plants 25,000 $/MW
Demand Side Management 80,000 $/unit

Table 16: Design Variable Ranges

Variable Units Min Max

Wind turbines MW rated capacity 0 200
PV installations MW rated capacity 0 200
Energy storage MWh capacity 0 200
Natural gas plants MW rated capacity 0 200
Demand Side Management “units” 0 10

to be insignificant. Some of this researcher’s early attempts to apply C-MOSI encountered

precisely this problem, where the problem did not actually require a frontier-finding method

at all, and was “too easy” compared to a real portfolio problem. To ensure that the test

problem reflected the challenge presented by a utility portfolio planning problem, the capital

cost assumptions and noise variable uncertainty distributions were adjusted so that a frontier

was present. The capital assumptions used for the test case are shown in Table 15, and

the noise variable distribution assumptions are shown in Table 17. These assumptions do

not necessarily reflect the best available information for any particular time period, so the

results of this test should not be construed as reflecting portfolios that are truly optimal in

the real world.

The design variables (portfolio options) for this test case were wind farms, photovoltaic

Table 17: Noise Variables

Variable Base Value Units Modifier Distribution

Mean wind speed 8.0 m/s Added N (µ = 0, σ = 1/30)
Natural Gas Price 45 $/MW Multiplier Γ(k = 1.8928, θ = 0.8928) + 0.5
Demand (series)* MW Multiplier Γ(k = 1.4434, θ = 0.4434) + 0.5
Market Trans. Price 80 $/MW Multiplier Γ(k = 1.8000, θ = 0.8000) + 0.5

*Demand parameters: Pmean load = 100MW, Pannual = 20MW, Pdaily = 50MW, σdemand =
10MW.
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installations, energy storage, natural gas plants, and demand-side-management, as described

in Chapter 7.

The demand and the design variable ranges were kept small so that the number of wind

turbines and photovoltaic arrays would remain small, for simulation run-time considerations.

The noise variables used were mean wind speed (to represent wind farm siting uncer-

tainty), natural gas price, demand (a linear re-scaling factor), and market electricity price.

Mean wind speed was given a Gaussian distribution with a fairly small variance. The other

three variables were given Gamma distributions.

The number of design and noise variables (5 and 4, respectively) were larger than in

the previous experiments conducted on the scalable test problem. As a first step, that

same scalable test problem was run at a higher dimensionality, with 5 design and 5 noise

variables. All four methods were run, in the same manner as in the sensitivity experiment

from Section 9.3. The results are shown in Figure 77, and show the same trends as in the

lower-dimensional problems. The algorithm details were not changed.

10.1.1 Transformed Noise Variables

Natural gas price, electricity demand, and market electricity price were given Gamma dis-

tributions, shown in 78. The Gamma pdf is denoted Γ(k, θ) where k is a shape parameter

and θ is a scale parameter. A Gamma distribution is bounded below, but has a long upper

tail. The three noise variables, also, are bounded below (they cannot go negative) and may

potentially increase substantially. The choice of a Gamma distribution does not reflect any

source of data, but was used to demonstrate that the method can be used with non-Gaussian

noise distributions. The parameters for the three variables can be found in Table 17. Note

that a constant of 0.5 was added in all three cases, and acted as a strict lower bound.

The analytical second order probability analysis used for experiments in the previous

chapter requires that the noise variable distributions be Gaussian. However, even if the true

noise distributions are not Gaussian, it is still possible to use the method by transforming

the noise inputs. The Gaussian Process is then fit to a transformed function, rather than

directly fit to the simulation data. For the purposes of second order probability analysis,
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Figure 77: Results from scalable test problem with pD = pS = 5. The scalable test problem
showed the same trends at this dimensionality as at lower dimensionality, without changes
to the algorithm.

Figure 78: A gamma distribution, with k = 2 and θ = 1, similar to the distributions used
in the simulations.
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the noise variables were assumed to follow the standard normal distribution:

S ∼ N (µ = 0, σ2 = 1) (147)

However, when fed into the simulation, they were transformed by:

S∗ = F−1
Γ (Φ(S); k, θ) (148)

where Φ(·) is just the standard normal CDF, and F−1
Γ (·; k, θ) is the inverse CDF of the

Gamma distribution with shape parameter k and scale parameter θ. The Gaussian Process,

however, was fit to S. Any response that is linear with respect to simulation inputs S∗,

therefore, will appear more complex as a function of S.

In this particular test case, for any given portfolio, the electricity cost is linear with re-

spect to the fuel price and market electricity price. If this were a real engineering problem,

rather than a method demonstration, it would not even be necessary to explore those two

noise dimensions. In fact, since the Gaussian Process models used here have a linear prior,

the linear dimensions become “too easy” if fit to un-transformed variables: the correlation

parameter terms (see Equation 20) become very small, and this can lead to numerical insta-

bilities. Transforming the noise variables therefore has a second function in this experiment,

of making the noise dimension “harder” so that it both better represents a real problem and

does not experience numerical instabilities. An example of a linear response that is modified

by transformed input variables is shown in Figure 79. It might be the case in practice that

such noise variables truly would be linear; in such a case, the simulation should be used

to calculate intermediate variables such as fuel use and electricity imports, and total cost

could be calculated externally. This would require some modification of the method, and

this is left to future work.

10.1.2 Wind vs. Natural Gas Trade and Adjusted Assumptions

In order to properly test the method, it was important that the test problem exhibit a

mean/risk frontier. To assure that this would be the case, a small number of cases were

run to ensure that a trade existed between natural gas plants and wind farms. Wind farms

exhibit low price risk: though wind production is not guaranteed or perfectly predictable, it
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Figure 79: A transformed input. S∗ has the Gamma distribution found in Figure 78, which
is assumed to be the true distribution of the noise variable. In (a), Y is a linear function of
S∗. In (b), Y is shown as a function of S, which has a standard normal distribution. The
functional form is more complex, but analytic SOP analysis can be used. All S inputs must
be transformed into S∗ before they are input to the simulation.

is completely insensitive to fuel price fluctuations. Natural gas plants, however, are sensitive

to fluctuations in the price of natural gas. To ensure that at least one trade existed, the

capital costs of the two resources and the uncertainty of fuel prices were set so that wind

power had higher expected cost than natural gas, but natural has had higher cost risk. This

was verified by running a five-by-five grid of 25 designs where only wind farms and natural

gas plants were present, each varied from low to high levels. For each design, 200 Monte

Carlo cases were run to assess uncertainty. These 25 cases are shown on a mean/risk plot

in Figure 80. The model assumptions were adjusted and the process was repeated several

times to ensure that this frontier was significant.

Photovoltaics are also low-risk once they have been installed, so the cost of Photovoltaic

systems was set high enough (on a per MWh basis) that it could not fully dominate this

entire frontier. Neither storage nor demand-side-management can completely satisfy de-

mand, so the appearance of a wind/gas trade was a good indicator that a similar trade

would appear on the final frontier.
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Figure 80: Small population of test cases to assure that a trade exists between mean and
pseudo-VaR. These represent a full factorial combination of wind farm and natural gas plant
sizes, from 0 to 200MW in increments of 50MW.

10.2 Independent Search for the Frontier

A multi-objective evolutionary algorithm with a very large number of function calls was used

to find an approximation of the true mean/VaR Pareto frontier. The MOEA was combined

with Monte-Carlo simulations to find mean and pseudo-VaR at every design. The MOEA

used was NSGA-ii, implemented using MATLAB’s built-in gamultiobj function. A fixed

Monte Carlo population of 200 was used for all designs. From the 25 wind/gas cases, the

Pareto set were fed into the initial population of the GA, to ensure that it quickly progressed

beyond them.

The MOEA was allowed to run for 20 generations, with a population of 40, and 200

Monte Carlo runs at each design, for a total of 160,000 function calls. The resulting frontier

is shown in Figure 81. Despite the large number of function calls, the search was not truly

very exhaustive due to run-time limitations. Some of the 25 wind/gas only runs remained

on the frontier, and with only 200 Monte Carlo runs per design, the exact values are likely

somewhat inaccurate.
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Figure 81: The Pareto frontier found through an NSGA-ii run with Monte Carlo runs in
noise space and X function calls. The six ’+’ symbols show the Pareto set from the 25
wind/gas only runs.

10.3 Implementing C-MOSI and C-DoE

For the most part, the implementation of C-MOSI and C-DoE was the same as in previous

experiments, with a couple of changes. The noise variable transformation was implemented

as a wrapper around the simulation code. Additionally, since the design variable ranges

were much larger than in the previous experiments, they were re-scaled to the interval [0,1]

before the Gaussian Process was fit, so that the θ correlation parameters would not become

poorly scaled. Additionally, the responses were divided by a factor of 70 to bring them

closer to unity, again to keep all scaling reasonable. This was all handled internally within

a Gaussian Process object.

Also unlike in the experiments conducted on the scalable test function, there was no

pre-knowledge of the underlying functional shape, so the relative scaling of the correlation

parameters could not be fixed. Instead, the GP fitting process treated each input as being

independently scaled, which increased the complexity and computational overhead of the

GP fitting stage. The θ correlation parameters were fit by maximizing log-likelihood with a

Genetic Algorithm that used a population of 100 and allowed a maximum of 100 generations.

The algorithm was run 8 independent times, and stopped sometime after its epistemic
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uncertainty bottomed out.

Unlike in the experiments on the scalable test problem, the “true” Pareto frontier was

not known during the C-MOSI run. This will be true in a real situation, as well. How-

ever, a surrogate for RMSE was tracked over the course of the runs, namely the epistemic

uncertainty along the current predicted frontier, σtotal as presented in section 9.2.1.1 and

Equation 131.

σtotal =
√
E[σ2

e ] =

√√√√ 1

2 ·NP

∑
i∈P

(
Var[µ](i)

R2
µ

+
Var[pVaR](i)

R2
pVaR

)

where Rµ and RpVaR terms are the ranges of the Pareto set. The summation is over the

current estimated Pareto set based on predicted mean values, as discussed in section 6.3.

This metric can be thought of as the epistemic equivalent of the RMSE. It was previously

shown to correlate with RMSE, and was proposed as a stopping criteria in section 9.2.1.1.

For C-DoE, the same settings were used, but the combined design/noise samples were

selected with the built-in MATLAB function lhsdesign, as in the previous experiments. The

same type of GP was fit.

10.4 Implementing X-MOSI

The implementation of X-MOSI was again largely the same as in the previous set of exper-

iments, with the same set of modifications. The noise variables were transformed using a

wrapper around the simulation code, and I-SOP was used to sample them at every design.

The design variables were re-scaled on the interval [0,1] before the two GP models were fit,

and all response values were divided by 70. The correlation parameters were fit with the

same Genetic Algorithm settings, a population of 20 and a maximum of 100 generations.

The algorithm was allowed to continue for about 300 iterations, over which it amassed about

30,000 samples.

X-DoE was not run, due to run-time limitations.

10.5 Comparative Performance of the Methods

The methods were assessed using basically the same methods as seen in the previous experi-

ments. The RMSE of the model was assessed with regard to the “true” Pareto set. However,
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Figure 82: Error progression for C-MOSI, C-DoE, and X-MOSI.

unlike with the scalable test problem, where the frontier was known analytically, in this case

it was found by NSGA-ii, with a limited sample budget. Therefore the “true” Pareto set

used here was actually an approximation, and importantly was found independently of the

three methods tested.

The results are similar to those seen in the previous experiments, and the error pro-

gression as a function of samples is shown in Figure 82. This figure is the equivalent of

Figure 77, though only a single X-MOSI run was performed, and no X-DoE runs. It does

show the relative performance of C-MOSI and C-DoE.

The X-MOSI trace is shown on the same plot, in red. Based on a single run, it appears

that its relative performance is similar to that in the analytic tests, though it was not run

with enough samples to determine if it would eventually reduce error further.

10.5.1 Discussion of Method Performance

As with the analytic test function, both C-MOSI and C-DoE experience an initial period of

very high error, followed by a sharp drop. The C-MOSI method can be seen to reduce error

faster than C-DoE, though the benefit is not as clear as in the analytic tests, and there is

some overlap between the performance of the two methods.

Unlike in the analytic cases, the RMSE of the C-MOSI runs quickly levels off, showing
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very slow improvements after about 100 samples. At around 300 samples, the RMSE of the

C-MOSI runs begins to fluctuate from one sample to the next.

Since the true Pareto frontier has only been approximated, it is possible that the leveling

off of error is due to this. Error in the approximated frontier will result in a lower bound

on RMSE, since the apparent error could never go below the error in the approximated

frontier except by an unlikely random chance. It is also possible that the leveling off is due

to poor fits or ill-conditioning in the GP, or some other set of factors.

The most likely explanation for the oscillations appears to be ill-conditioning of the

Gaussian Process models. The spikes in RMSE correspond to iterations where the epistemic

uncertainty in the model is also high, which could simply be a symptom of poor fits but

was previously seen as a symptom of ill-conditioning (see section 9.2.1.1). As can be seen

in Figure 85, high epistemic uncertainty at the current estimated Pareto frontier correlates

highly with high RMSE along the true Pareto frontier. Although it is not a perfect predictor,

it was proposed as a stopping criteria in section 9.2.1.1. Unlike in the analytic test cases,

however, the RMSE does not climb continuously after it bottoms out; instead, it fluctuates

wildly, and the low points still show low error. However, the plots in Figure 85 show that

once the σtotal reaches its minimum value, RMSE does not improve much further. It is

proposed, therefore, that the runs be stopped after the σtotal does not reduce for some

number of iterations. At that point the model corresponding to the lowest σtotal should be

used.

Figure 83(a) shows the estimated Pareto frontier, as reached by four runs of the method,

at their points of minimum σtotal. The plot also shows the epistemic uncertainty ellipses

around those designs. Note that some designs appear to dominate the designs found by the

MOEA; it is entirely possible that some do, but it is not possible to tell without running

extensive Monte Carlo on the designs, since the plot only shows the estimated frontier,

according to the best knowledge of the GP. For comparison, Figure 84 shows four of the

C-DoE runs on a similar plot, at varying sample sizes. The estimated frontier in these cases

were found by exhaustively optimizing the GP, which was inexpensive. Note that even at

large sample sizes, the C-DoE has higher epistemic uncertainty, and does not appear to do

190



www.manaraa.com

Run Total Min @ Min @ RMSE at RMSE %
samples RMSE sample σtotal sample min σtotal increase

1 837 0.081 701 0.025 206 0.178 120%
2 658 0.077 346 0.031 180 0.127 66%
3 548 0.065 100 0.034 144 0.111 70%
4 358 0.073 182 0.040 116 0.098 35%
5 360 0.106 68 0.050 116 0.142 34%
6 474 0.051 356 0.045 190 0.136 169%
7 496 0.075 426 0.034 186 0.113 51%
8 410 0.072 86 0.041 250 0.133 86%

Table 18: RMSE and σtotal

as good a job of approximating the frontier.

In an absolute sense, the RMSE stays quite high in all of the cases. Table 18 shows

the minimum RMSE reached by the eight test cases, as well as the RMSE reached at

their point of minimum σtotal. The RMSE tends to hover around 0.1, with the lowest

(omnisciently found) values at around 0.05. The sample budgets are on the order of a few

hundred. For such low sample budgets, a combined-space DoE could not produce such

low RMSE; however, ill-conditioning means that further samples will not help the model.

From a theoretical standpoint, C-MOSI is very appealing for its sample efficiency, but

ill-conditioning presents a practical limitation, as does the high overhead cost.
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(a) Epistemic ellipses

(b) True location

Figure 83: (a) Best C-MOSI estimates of the Pareto frontier, first 4 runs. These are snap-
shots taken at minimum σtotal. The 95% Bayesian epistemic confidence ellipses are shown.
Whether any of the designs genuinely dominate the MOEA points cannot be discerned from
this graph. (b) The first run has been assessed with 1000-run Monte Carlo (x’s), and is
shown with its predicted values (ellipses)
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Figure 84: Best C-DoE estimates of the Pareto frontier, four differently sized DoEs. The
GP models were exhaustively optimized with an MOEA to find these Pareto sets. The 95%
Bayesian epistemic confidence ellipses are shown.

Figure 85: For four C-MOSI runs, RMSE as a function of the root mean epistemic variance
along the predicted frontier (σtotal, Eq. 131). Color corresponds to number of samples.
Epistemic uncertainty roughly correlates with actual error, but the point of minimum un-
certainty is not necessarily the point of minimum error.
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CHAPTER XI

SUMMARY AND CONCLUSIONS

Electric power portfolio selection was re-cast as a robust design problem. A scalable test

problem was developed that mimicked the general behavior of an electric power simulation

problem, and this was used to test four robust design methods, shown in Table 19.

The lower-right method, C-MOSI, is not previously found in the literature. This lead

to an overall research objective:

Research Objective: Implement multi-objective statistical improvement methods using

surrogate models that are functions of both design and noise variables (combined arrays).

Implementing it presented several challenges, which were solved with a combination

of existing methods and some new work. New contributions included an extension to

O’Hagan’s [88] and Apley’s [4] works in finding epistemic uncertainty in aleatory uncer-

tainty metrics from GP models: the methods were extended to combined-space models.

Additionally, Emmerich et al.’s multi-objective expected improvement algorithm [30] was

modified to handle uncertain Pareto sets, which encouraged additional sampling near un-

certain designs.

Three research questions were raised:

Research Question 1: For finding mean/risk Pareto frontiers, how does the relative

efficiency of combined and crossed arrays depend on the number of noise variables?

Table 19: Taxonomy of Methods

Crossed Array Combined Array

Design of

Experiments X-DoE C-DoE

Multi-Objective

Statistical X-MOSI C-MOSI

Improvement
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Hypothesis 1: As the number of noise variables increases, the efficiency of combined array

methods will suffer relative to the efficiency of crossed array methods.

Research Question 2: For finding mean/risk Pareto frontiers, how does the relative

efficiency of design of experiments and multi-objective statistical improvement change with

the number of design variables?

Hypothesis 2: As the number of design variables increases, multi-objective statistical

improvement methods will become more efficient relative to a design of experiments.

Research Question 3: Is there a design scenario where a combined array Multi-Objective

Statistical Improvement method out-performs both crossed-array and design of experiments

methods in terms of efficiency?

No hypothesis was formulated for Research Question 3. These research questions were

answered with a series of experiments.

11.1 Experiment: Sweep of Warm-Start Size

Two main experiments were conducted. In the first, combined-array (C) methods and

crossed-array (X) methods were each treated as continuums. By running a sweep of warm-

start DoE size, and then running a MOSI method until it stopped improving, it was shown

that the MOSI methods were more efficient than the DoE methods. Efficiency was defined

as achieving some level of accuracy along the true Pareto frontier for a particular number

of samples. The sweep of warm-start size is shown in Figure 86. It shows that the MOSI

methods largely dominate the DoE methods, but for higher numbers of samples all of the

methods begin to break down. This was the result of ill-conditioning in the Gaussian Process

models.

It was found that for this test problem, the smallest possible warm-start size was always

optimal.

11.2 Experiment: Sensitivity of the Four Methods

In a second experiment, all four methods were run at varying numbers of design and noise

variables. In each case, the DoE methods were swept from small to large sizes (as in the

previous experiment), and the MOSI methods were run 10 times from the smallest possible
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Figure 86: All four methods, after a sweep of warm-start DoE sizes. Every MOSI end-point
(box and diamond) is the result of starting from a DoE warm-start (+ and x) and running
the method until the RMSE stopped improving. Note that all four methods suffer from
ill-conditioning effects at higher numbers of samples; this was both the stopping criteria for
the MOSI methods, and the reason for the performance degradation seen above.

warm-starts. Every DoE and every iteration of the MOSI methods was taken as a data

point, achieving some level of accuracy (measured by root mean square error along the true

Pareto frontier) for some number of samples. All of this data was used to construct a model

for how the methods reduced error with samples. A power model was found to fit the data

well.

The numbers of design and noise variables were both varied from 2 to 3. This is a small

range, much smaller than is likely to be found in a real design problem, but it enabled

extensive data collection on the four methods and good fits for the error models. A total of

16 error models were fit, for every combination of array type, sampling approach, number

of design variables, and number of noise variables. All 16 models and their underlying data

can be seen in Figure 87.

This same data was then used to regress a single unified error model, that described

root mean squared error (RMSE) as a function of not only samples, but also array type (X

or C), sampling approach (DoE or MOSI), number of design variables (pD) and number of

noise variables (pS). The interaction terms in this model were used to answer the first two
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Figure 87: All 16 error models, for every possible combination of array types (X or C),
sampling approaches (DoE or MOSI), number of design variables (pD), and number of
noise variables (pS). Each x-axis shows number of samples, and each y-axis shows root
mean squared error (RMSE) along the true Pareto frontier.
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research questions, as well as providing additional insight, all of which can be summarized

as follows:

• Crossed (X) arrays are more sensitive to design dimensionality than Combined (C)

arrays

but they are less sensitive to noise dimensionality (confirming Hypothesis 1)

• DoE sampling is more sensitive to design dimensionality than MOSI sampling (con-

firming Hypothesis 2)

but it is less sensitive to noise dimensionality

Lastly, it was not possible to give a definitive answer to Research Question 3, partly

because was is not possible to give a single metric for “efficiency”. It was possible to give

a qualified answer, however:

• If the sample budget is below a certain threshold, under certain design scenarios,

C-MOSI will be more efficient than C-DoE, X-MOSI, and X-DoE.

• If the required accuracy level is above a certain threshold, under certain design sce-

narios, C-MOSI will be unable to reduce error sufficiently, and X-MOSI will be more

efficient than the other three methods.

Though it should be noted that all of these conclusions may only apply to the scalable

test problem, and might not apply generally.

11.3 Demonstration of C-MOSI on an Electric Portfolio Test Problem

Lastly, C-MOSI was demonstrated on a low-fidelity electric power portfolio simulation, and

compared with C-DoE runs of varying sizes. Like in the previous experiments, the adaptive

sampling approach showed higher efficiency for low sample budgets. As the number of

samples increased, however, ill-conditioning in the Gaussian Process surrogates meant that

further samples did not improve the model, and the error along the true frontier could not

be reduced further. In the simulation test case, however, this effect was more pronounced

than in the analytic case, and the benefits of using C-MOSI were relatively less than in the

analytic tests.
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11.4 When Should C-MOSI be Used?

A final result from the experiments showed that at least for this test problem, C-MOSI was

more efficient than the other methods at reducing RMSE for low numbers of samples. For

high numbers of samples, ill-conditioning prevented further error reduction, and for high

sample budgets X-MOSI was most efficient.

This might imply that C-MOSI should always be used for robust design problems with

low sample budgets, but this is not necessarily the case.

First, there are limitations to when the method can be used. In the scalable test prob-

lem, the noise variables were made to have Gaussian distributions. This, combined with

the use of Gaussian Process models, allowed the use of analytic expressions for second-order

uncertainty metrics. These second-order terms are necessary for the use of C-MOSI. There

are ways to calculate them using Monte Carlo, when the noise variable distributions are

not Gaussian, but this requires nested Monte Carlo, which is extremely expensive computa-

tionally. Though not presented in this document, early experiments with such an approach

had poor results because inaccuracies in the Monte Carlo results eliminated any advantage

of using MOSI in the first place. In the power portfolio simulation demonstration case, the

analytic expressions were used when the noise variables were not Gaussian, by transforming

the inputs to the simulation code. This worked, but added complexity to the space being

modeled by the GP, and may have contributed to the poorer performance of C-MOSI in

that case. This distortion and added complexity will be low if the noise variable distribution

is close to Gaussian.

There is also an overhead cost associated with C-MOSI. Statistical improvement meth-

ods in general have computational overhead that makes them ill-advised in cases where

simulations are cheap, partly because the Bayesian models they rely on must be re-fit after

every set of samples. C-MOSI has even more computational overhead. Even the analyti-

cally computed SOPs incurred a significant cost (O(n3)), and this cost was nested inside of

an optimizer, used to select the most promising design. Once a design had been selected,

there were still two equally expensive steps that were required to select samples in noise

space. Even this least expensive version of C-MOSI required on the order of minutes to
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hours to complete each sampling iteration.

Finally, this implementation was limited in its choice of risk metric. The chosen metric

was Value-at-Risk, which is just a percentile (here 95th percentile was used). However,

because of the analytic SOP calculations, this metric could not be used directly; instead,

a metric which was referred to as “pseudo-Value-at-Risk” was used. It was the same as a

metric used by Apley et al.[4], simply µ+ c ·σ, and with Gaussian output distributions it is

equivalent to a percentile. Outputs can never be relied on to be Gaussian, however, and if

the response is far from Gaussian this would be a poor choice. To truly adaptively sample

for VaR, it would be necessary to resort again to a Monte Carlo approach, and all of the

costs associated with it.

Based on these results and experience, then, C-MOSI can be recommended as method

for robust design under the following conditions:

1. The noise variables are Gaussian or close to Gaussian, and their distributions are

well-known

2. The sample budget is small

3. Every simulation takes on the order of minutes or longer

4. Pseudo-VaR (µ+ c · σ) is an acceptable risk metric

The first item above has been augmented with the condition that the noise variable

distributions are well-known. This is a condition inherent in any adaptive sampling approach

to robust design. If the model is only accurate around the Pareto frontier, and the frontier

changes (because the noise variable distributions change, for example), then it might not

be accurate around the new frontier. That is not to say that such a model could not be

updated, and if the changes to the noise variable distributions were small, it might not

require very many additional samples.

11.5 Future Work

As might be expected, the investigations in this dissertation raised many more questions

than could be answered, and a number of them might prove interesting for future work.
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11.5.1 Other Surrogate Models

All of the experiments in this document make use of Gaussian Process models. GPs incur

significant regression overhead which increases as the cube of the sample size, and suffer

ill-conditioning effects as their samples get close together. Other options exist, such as treed

GPs [47] and sparse linear models [110], and their use should be investigated.

11.5.2 Parallelization

Much modern simulation is done with massively parallel computing, but the C-MOSI

method as presented here is not trivially parallelizable. Expected improvement methods

can be parallelized [43], and for the method to be maximally useful, this should be inves-

tigated. Additionally, there is the potential to combine a general C-MOSI framework with

other optimization concepts. An approach which was tested and found promising was the

use of a multi-points EI criteria combined with a non-nested Monte Carlo approach; such

an approach can work with arbitrary noise variable distributions, but further development

is required.

11.5.3 Other Risk Measures

The choice of “pseudo-Value-at-Risk” for the test cases in this research allowed for clean

analytical results, but it is not a risk metric that is used in often in practice, and it is an

imperfect approximation of Value-at-Risk. Metrics such as Value-at-Risk (percentile) or

Conditional Value-at-Risk are more commonly used and trusted. More efforts are needed

to find analytic, semi-analytic, or efficient numerical estimates of these risk metrics.

11.5.4 Decision Theory Approach

Much work remains in the intersection between statistical improvement methods and robust

design. Rather than a multi-objective approach, a decision theory approach can be used

with a-priori risk preference elicitation and the use of utility functions. For a particular

design, with epistemic uncertainty present in the combined-space surrogate model, there will

be epistemic uncertainty in the expected utility; this leads naturally to a single-objective

expected improvement method. Such an approach was tested, but requires further work.
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Such an approach can take one of two possible routes. In the first (which was tested to

a limited degree, but not documented) it can use Monte Carlo (including MCMC) methods

to estimate the epistemic uncertainty in the expected utility of designs. This would most

likely require very large numbers of Monte Carlo samples in order to work effectively. In an

alternate approach, analytic expressions could be sought to find the epistemic uncertainty

for common utility functions (such as an exponential utility function).

11.5.5 Multiple Stochastic Objectives

Alternately, more objectives could be considered, rather than the two included in this work.

Generally, there are many possible criteria for use in adaptive sampling methods, and many

ways of dealing with uncertainty.

11.5.6 Stochastic Time Series

In the field of power portfolio selection, and many other areas, uncertainty comes in the

form both of uncertain variables (as was treated here) and as stochastic time series (such

as natural gas price or wind speed series). In the latter case, there may be interest in

risk within the simulation. Even for aggregated measures the results might be different for

simulations run with the same inputs. This latter effect is the domain of heteroscedastic

problems, and there is much work to be done to integrate this type of problem into a robust

design framework.

11.5.7 Avoiding Sampling over Linear Inputs

In the electric power portfolio simulation used in this work, the cost of electricity was linear

with respect to several of the inputs, namely natural gas price and market electricity price.

In practice, if such a situation existed, it would be inefficient to fit a surrogate model to

those inputs. Instead, it would be more sensible to fit surrogates of reduced dimensionality

to intermediate variables such as natural gas consumed and market purchases. This would

require a re-formulation of the adaptive sampling method.
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11.5.8 Efficient Numerical Approaches

This work used a direct modification of existing Statistical Improvement methods. For rea-

sons of computational efficiency, analytical Second Order Probability analysis was used, but

this introduced limitations on the conditions under which the method could be used. Those

limitations can by bypassed if the designer is willing to incur the computational expense of

performing nested Monte Carlo runs. However, there may be other numerical approaches

that bypass nested Monte Carlo while still preserving the idea of reducing epistemic un-

certainty with regard to aleatory uncertainty metrics. Several variations were attempted

(though un-documented) that used single (non-nested) Monte Carlo populations and se-

lected sample points directly from a relatively small population of points; these attempts

showed some promise, but require further theoretical development.

11.5.9 Further Real-World Testing

Perhaps most importantly, these methods must be tested on real-world engineering or elec-

tric power portfolio problems. The initial results from a simple electric power simulation

showed some advantage of C-MOSI over C-DoE, but not to the extent that was demon-

strated on a simpler test case. It appears that the relative merits of the two methods are

therefore sensitive to algorithm parameters or problem characteristics, and these sensitivi-

ties should be investigated.
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APPENDIX A

SECOND ORDER PROBABILITY ANALYSIS FOR GAUSSIAN

PROCESS MODELS

In order to find expected improvement with a combined design/noise array Gaussian Pro-

cess, it is first necessary to compute second-order moments, to characterize the epistemic

uncertainty in the aleatory moments. The test cases in this document use two objectives:

mean µ, and the value µ + c · σ, which is referred to in this text as pseudo-Value-at-Risk

(pVaR), since in the case of a Gaussian distribution it is the same as a percentile. To find

expected improvement in those two metrics, the epistemic mean and variance of the two

must be found.

This appendix describes the necessary computational steps, without any derivation.

Nearly all of the information in this appendix, along with the relevant derivations, can be

found in two sources:

• An un-published paper by O’Hagan [88] presents the computation of E[µ], Var[µ],

E[σ2], and Var[σ2].

• An earlier paper by Apley et al. [4] provides a less-detailed approach to computing the

same terms, and from those terms also provides computation of mean and variance

for f(d) = µ(d) + c · σ(d).

This appendix also provides a single correction to O’Hagan’s paper, and modifies the ex-

pressions to apply in the case of combined arrays.

A.1 O’Hagan’s Approach to Calculating SOPs

The following mostly follows O’Hagan’s un-published paper [88], omitting all derivations

and with one correction. In the original paper, the GP is only a function of noise variables,

with no design variables at all, which will lead to some differences in the expressions,
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usually through the appearance of extra terms to let the deterministic design variables

“pass through”.

Note also that the form of the emulator used is technically a t-Process (tP) rather than a

Gaussian Process (GP) because it has been specified with a global scalar variance multiplier

σ2 that has an inverse-gamma prior and estimated value σ̂2.

An asterisk (∗) denotes epistemic expectations, variances, and covariances that are with

respect to the Gaussian Process emulator, rather than with respect to some externally

specified probability distribution.

The aleatory mean and variance with respect to an externally defined uncertainty dis-

tribution are denoted here as M and V to match O’Hagan’s notation (rather than as µ and

σ2 as previously). They are due to uncertainty on the noise variables, which are assumed

to have a probability distribution g(S) that is multivariate Gaussian:

g(S) ∼MVN(m,B−1) (149)

where m is a column vector of aleatory mean values and B is an aleatory precision matrix.

Note that all expressions that follow will use the precision matrix rather its inverse, the

covariance matrix Σ.

A.1.1 Mean and Covariance Function

It is assumed that there is some true function f(x), and a GP emulator has been fit to

it. For any point x, the GP is assumed to provide a mean function m∗(x) = E∗[f(x)] and

covariance function v∗(x, x′) = Cov∗[f(x), f(x′)].

The mean function for the tP was presented in Equation 28:

µT̂ (x) = φ(x)T β̂ + ψTΨ(T − φ(X)β̂)

or, using the notation of O’Hagan,

m∗(x) = h(x)T β̂ + t(x)T e

e = A−1(y −Hβ̂)
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where W is the same as in Chapter , y is the response data vector (called T previously), H

is the design matrix (called φ previously), t(x) is the correlation between x and all existing

data points (called φ(X) previously) and A is the correlation matrix (called Ψ previously).

The covariance function for the tP was presented in Equation 30:

Cov[T̂ (x(i)), T̂ (x(j))] = σ̂2[k(x(i), x(j))− ψ(x(i))TΨ−1ψ(x(j))

+ {φ(x(i))−GTψ(x(i))}TW{φ(x(j))−GTψ(x(j))}]

or, using O’Hagan’s notation:

v∗(x, x′) =σ̂2[c(x, x′)− t(x)TA−1t(x′)

+ {h(x)−GT t(x)}TW{h(x′)−GT t(x′)}]

where c(x, x′) is the Gaussian kernel correlation function between two points. In O’Hagan’s

paper, this takes a Gaussian form with a nugget,

c(x, x′) = νI(x = x′) + (1− ν) exp{−(x− x′)C(x− x′)} (150)

Where I(x = x′) is an indicator function that is 1 if x = x′, and ν ∈ [0, 1] is a nugget. This

work did not use a nugget (ν = 0), but it will be left in for completeness since it is largely

unobtrusive in the expressions.

The term C is a positive definite matrix of correlation parameters, referred to as θ’s

previously in this document, that are estimated with optimization of a likelihood function.

In this work, the C matrix is assumed to be be diagonal. Indeed, the modifications made

here to accommodate the presence of both design and noise variables assume that C is

diagonal, or at least that it can be broken into two separate matrices CD and CS for the

design and noise variables, respectively. These two are each referred to as matrices primarily

to make the notation cleaner.
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A.1.2 Required Integrals

The required integrals are:

E∗[M ] =

∫
m∗(x)dg(x),

Var∗[M ] =

∫ ∫
v∗(x, x′)dg(x)dg(x′),

I1 =

∫
v∗(x, x)dg(x),

I2 =

∫
m∗(x)2dg(x),

I3 =

∫ ∫
v∗(x, x′)2dg(x)dg(x′),

I4 =

∫ ∫
m∗(x)m∗(x′)v∗(x, x′)dg(x)dg(x′),

I5 =

∫ ∫ ∫
v∗(x, x′)v∗(x, x′′)dg(x)dg(x′)dg(x′′),

I6 =

∫ ∫
m∗(x)v∗(x, x′)dg(x)dg(x′). (151)

and in terms of these integrals, the statistics for σ2 are:

E∗[σ2] =(I1 −Var∗[M ]) + (I2 − E∗[M ]2)

Var∗[V ] =2(I3 − 2I5 + Var∗[M ]2)

+ 4(I4 − 2E∗[M ]I6 + E∗[M ]2Var∗[M ])

+
2

N − L− 4
{2(I3 − 2I5 + Var∗[M ]2) + (I1 −Var∗[M ])2} (152)

The last line is due to the emulator being a t-Process (tP) rather than a Gaussian Process

(GP). N is the number of data points, and L is the number of basis vectors in the linear

model prior.

The eight integrals in 151 are evaluated in terms of 14 additional expressions, using

207



www.manaraa.com

O’Hagan’s notation:

Rh =

∫
h(x)dg(x)

Rt =

∫
t(x)dg(x)

Rhh =

∫
h(x)h(x)Tdg(x)

Rht =

∫
h(x)t(x)Tdg(x)

Rtt =

∫
t(x)t(x)Tdg(x)

U =

∫ ∫
c(x, x′)dg(x)dg(x′)

Uh =

∫ ∫
h(x)c(x, x′)dg(x)dg(x′)

Ut =

∫ ∫
t(x)c(x, x′)dg(x)dg(x′)

Uhh =

∫ ∫
h(x)c(x, x′)h(x′)Tdg(x)dg(x′)

Uht =

∫ ∫
h(x)c(x, x′)t(x′)Tdg(x)dg(x′)

Utt =

∫ ∫
t(x)c(x, x′)t(x′)Tdg(x)dg(x′)

Ũ =

∫
c(x, x)dg(x)

S =

∫ ∫ ∫
c(x, x′)c(x, x′′)dg(x)dg(x′)dg(x′′)

S̃ =

∫ ∫
c(x, x′)2dg(x)dg(x′) (153)

Expanding 151 in terms of 153 leads to:

E∗[M ] = RTh β̂ +RTt e

Var∗[M ] = σ̂2[U −RTt A−1Rt + (Rh −GTRt)TW (Rh −GTRt)]

I1 = σ̂2[Ũ − tr(A−1Rtt) + tr(W (Rhh − 2RhtG+GTRttG))]

I2 = β̂TRhhβ̂ + 2β̂TRhte+ eTRtte

I3 = σ̂4[S̃ − 2tr(A−1Utt) + tr(A−1RttA
−1Rtt) + 2tr(W (Uhh − 2UhtG+GTUttG))

− 2tr(A−1(Rht −GTRtt)TW (Rht −GTRtt))

+ tr(W (Rhh − 2RhtG+GTRttG)W (Rhh − 2RhtG+GTRttG))]
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I4 = σ̂2[β̂TUhhβ̂ + 2β̂TUhte+ eTUtte

−β̂TRhtA−1RThtβ̂ − 2β̂TRhtA
−1Rtte− eTRttA−1Rtte

+(Rhhβ̂ −GTRThtβ̂ +Rhte−GTRtte)T

W (Rhhβ̂ −GTRThtβ̂ +Rhte−GTRtte)]

I5 = σ̂4[S − 2RTt A
−1Ut +RTt A

−1RttA
−1Rt

+ 2(Uh −GTUt)TW (Rh −GTRt)

− 2RTt A
−1(RTht −RttG)W (Rh −GTRt)

+ (Rh −GTRt)TW (Rhh − 2htG+GTRttG)W (Rh −GTRt)]

I6 = σ̂2[β̂TUh − β̂TRhtA−1Rt + β̂T (Rhh −RhtG)W (Rh −GTRt)

+ eTUt − eTRttA−1Rt + eT (Rht −GTRtt)TW (Rh −GTRt)] (154)

These are the expressions necessary to compute the four second-order statistics, with ex-

pressions for the terms to be presented shortly. Note that wherever a trace of a product is

taken (especially in term I3), rather than multiplying out the full expressions, it is faster

to take advantage of the fact that not all information from the product is needed:

tr(XTY ) =
∑
i,j

Xi,jYi,j (155)

A.1.3 The R Integrals

Rh and Rhh are expectations with respect to the noise variable distributions, denoted in

O’Hagan’s paper by EX [·|m,B] since X is a random variable in O’Hagan’s paper. In

this case, X is composed of a random component S and a deterministic design variable

component D, so that X = [D,S] for the whole dataset or x = [d, s] for a single data point.

The notation and expressions do not change very much, except that the design variables d

will essentially “pass through” the expressions.

Rh = ES [h(x)|m,B]

Rhh = ES [h(x)|m,B] (156)
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If the prior linear model has only a constant term and linear terms, as was used in this

work, and the design vector h(x) is

h(x) =


1

d

s

 (157)

where d and s are column vectors of the design and noise variable values, then

Rh =


1

d

m

 (158)

Rhh =


1, dT , mT

d, d dT , d mT

m, m dT , mmT +B−1

 (159)

This differs from O’Hagan’s expressions in the addition of d and associated terms.

Many of the remaining terms will follow a consistent format. There will be QS(s)

expressions, which will be used to evaluate a specific modified mean vector m′. There will

also be a QD(d) expression, not found in O’Hagan’s paper, to deal with the deterministic

design variables that are just “passing through”. Both Q(x) expressions must be computed

for every data point xk, k ∈ (1 · · ·N). For Rt and Rht, the terms are:

QS,k(s) = 2(s− sk)TCS(s− sk) + (s−m)TB(s−m) (160)

m′k = (2C +B)−1(2CS sk +Bm) (161)

QD,k(d) = (d− dk)TCD(d− dk) (162)

The k-th element of N × 1 vector Rt, and the k-th column of N × pS matrix Rht are

Rt(k) = (1− ν)|B|1/2|2CS +B|−1/2 exp{−QS,k(m′k)/2−QD,k(d)} (163)

Rht(k) = Rt(k) ES [h(x)|m′k, 2C +B] = Rt(k)


1

d

m′k

 (164)
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These expressions differ from O’Hagan’s due to the addition of the QD,k(d) term and the

d term. In practice, all QS(s) terms can be pre-computed once every time the dataset is

updated, and only the QD(d) terms need to be computed individually for every un-sampled

design.

The last R term, Rtt, is computed with

QS,kl(s) = 2(s− sk)TCS(s− sk) + 2(s− sl)TCS(s− sl) + (s−m)TB(s−m) (165)

m′kl = (4CS +B)−1(2CSsk + 2CSsl +Bm) (166)

QD,kl(d) = (d− dk)TCD(d− dk) + (d− dl)TCD(d− dl) (167)

Rtt(k, l) = (1− ν)2|B|1/2|4CS +B|−1/2 exp{−QS,kl(m′kl)/2−QD,kl(d)} (168)

In practice, if the C terms are diagonal, it is possible to write faster-executing versions of

the above expressions, but the above form is retained for clarity. Additionally, in MATLAB

there are significant benefits from using vectorized expressions, and these expressions were

completely re-written, with all of the terms distributed, to eliminate looping and speed up

the computations. Those forms are not presented here, as they are cumbersome.

A.1.4 The U Integrals

Skipping all derivation (at the risk of adding confusion due to lack of context), the U-terms

are:

U = (1− ν)|B||B|−1/2 (169)

Uh = U


1

d

m

 (170)

Uhh = U


1, dT , m

d, d dT , d m

m, m dT , m mT + (B−1)′

 (171)

where

B =

2CS +B −2CS

−2CS 2CS +B

 (172)
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and (B−1)′ is the lower left submatrix of the inverse of B. The term m in the above

expressions is actually a sub-vector from a vector O’Hagan calls m, but it is equal to m.

Next,

QuS,k(s) =2(s′ − sk)TCS(s′ − sk) + 2(s− s′)TCS(s− s′) (173)

+ (s−m)TB(s−m) + (s′ −m)TB(s′ −m) (174)

Ut(k) =(1− ν)2|B||Bk|−1/2 exp{−QuS,k(m′k)/2−QD,k(d)} (175)

where QD,k(d) is as in Rt. Boldface s is just a pS × 1 concatenated vector,

s =

s
s′

 (176)

and

m′k = B−1
k

 Bm

2CSsk +Bm

 , Bk =

2CS +B −2CS

−2CS 4CS +B

 (177)

Next,

Uht(k) = Ut ES [h(X)|m′k,Bk] =


1

d

(m′k)
′

 (178)

where (m′k)
′ is just a cumbersome way of signifying the upper pS × 1 sub-vector from m′k.

Last of the U integrals, the expression for Utt in O’Hagan has an error, and should be

QuS,kl(s) = 2(s− sk)TCS(s− sk) + 2(s′ − sl)TCS(s′ − sl) (179)

+ 2(s− s′)TCS(s− s′) (180)

+ (s−m)TB(s−m) + (s′ −m)TB(s′ −m) (181)

= (s−m′kl)
TBkl(s−m′kl) +QuS,kl(m

′
kl) (182)

Utt(k, l) = (1− ν)3|B||Bkl|−1/2 exp{−QuS,kl(m′kl)/2−QD,kl(d)} (183)

where

m′kl = B−1
kl

2CSsk +Bm

2CSsl +Bm

 , Bkl =

4CS +B −2CS

−2CS 4CS +B

 (184)
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(To use the previous expression in the context of O’Hagan’s paper, with no design

variables, simply replace the s’s with x’s, remove all S subscripts, and remove the QD,kl(d)

term.)

A.1.5 The S Integrals

Lastly, the two S integrals are

S = (1− ν)2|B|3/2

∣∣∣∣∣∣∣∣∣∣
4CS +B −2CS −2CS

−2CS 2CS +B 0

−2CS 0 2CS +B

∣∣∣∣∣∣∣∣∣∣

−1/2

(185)

S̃ = (1− ν)|B|

∣∣∣∣∣∣∣
4CS +B −4CS

−4CS 4CS +B

∣∣∣∣∣∣∣
−1/2

(186)

All together, the expressions in the previous section provide all information necessary to

compute the second-order statistics E[M ], Var[M ], E[V ], and Var[V ]. In MATLAB, where

vectorization results in significant speedup over looping, considerable time savings can be

found by replacing all looping over k and l with non-looped expressions. Since MATLAB

cannot perform matrix operations on multi-dimensional arrays, this requires expansion of

all matrix polynomials, and results in considerably more complex expressions, which are

not provided here, but can be provided upon request.

A.2 Apley’s Objective Function

The objectives used in the test cases were mean and an objective used by Apley [4],

f(d) ≡ µ(d) + c · σ(d) (187)

where µ(d) and σ2(d) are the aleatory mean and variance due to the noise variable distri-

butions (the same as M and V in O’Hagan’s notation). f(d) was referred to previously

as “pseudo-Value-at-Risk” since it’s the same as a percentile when the aleatory response

distribution is Gaussian. When there is epistemic emulator uncertainty, the second-order
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statistics for this function are

µf (d) = µµ(d) + c · µσ(d) (188)

σ2
f (d) = σ2

µ(d) + c2σ2
σ(d) + 2cCov[µ(d), σ(d)] (189)

where in O’Hagan’s notation, σ2
µ is Var[M ], etc.

Apley points out that assuming the epistemic distribution σ(d) is Gaussian is a better

assumption than assuming σ2(d) is Gaussian, and if this assumption is made, it is possible

to find the statistics

µσ(d) = [µ2
V −Var[V ]/2]1/4 (190)

σ2
σ(d) = µV − [µ2

V −Var[V ]/2]1/2 (191)

where the notation is getting messy (and Apley uses S instead of V ), but hopefully the

intent is clear.

Importantly, Apley performs the same set of derivations as O’Hagan (presumably,

though much is left un-said in the paper) and additionally arrives at an expression for

Cov[µ(d), V ]. It is provided here using O’Hagan’s notation and terms:

Cov[M,V ] =E[M ]
(
I1 + I2 − E[M ]2 − 3Var[M ]

)
+ 2I6 − E[M ]E[V ] (192)

Armed with Cov[M,V ], it is possible to go back to Equation 189 and find the epistemic

variance of the pseudo-Value-at-Risk. This was the last missing piece of the SOP puzzle,

and now it is possible to find the multi-objective expected improvement in both aleatory

mean and aleatory pseudo-Value-at-Risk for a combined-array Gaussian Process.
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